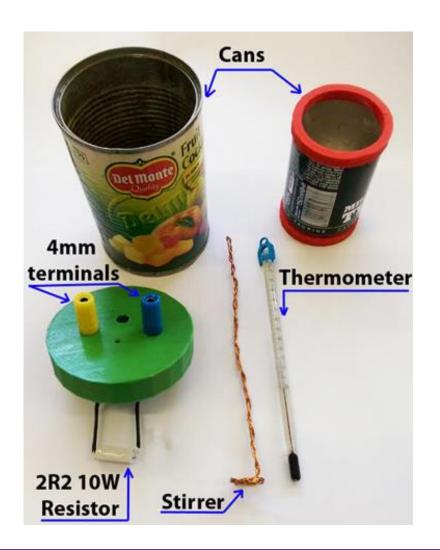


GCSE Physics required practicals DIY equipment and tips for technicians

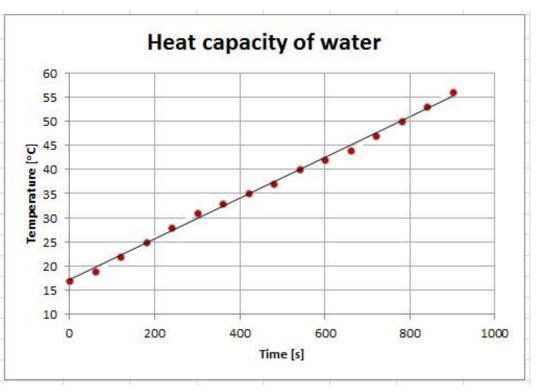
Marcin Poblocki, AQA Technician Adviser January 2018



10 required activities

- 1. Specific heat capacity (solid)
- 2. Thermal insulation Physics specification only
- 3. Resistance (wire)
- 4. V-I characteristics (filament bulb, resistor, diode)
- 5. Density
- 6. Light (reflection and refraction)
- 7. Force and extension (spring)
- 8. Acceleration (F=ma)
- 9. Waves (ripple tank) Physics specification only
- 10. Radiation and absorption (Leslie cube)

Specific heat capacity



Specific heat capacity

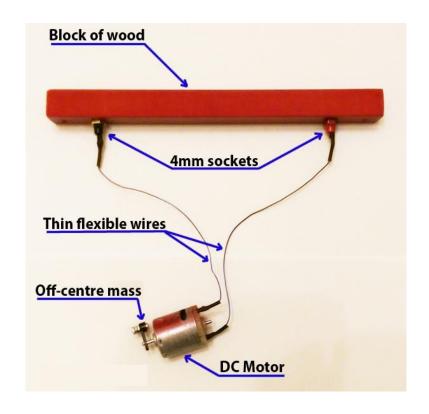
t [s]	T [°C]	m [kg]	0.07233
0	17	U [V]	7.14
60	19	I [A]	1.98
120	22		
180	25		
240	28	0	
300	31	c _w [J kg/°C]	4510
360	33	c _w [J kg/°C]	4181
420	35		
480	37	Error [%]	7.3
540	40	101111111	
600	42		
660	44		
720	47		
780	50		
840	53		
900	56		

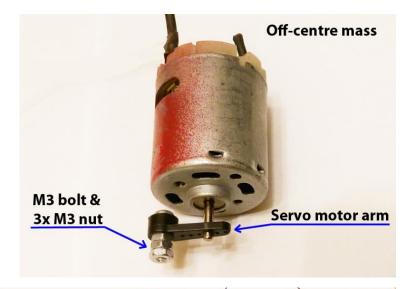
Specific heat capacity

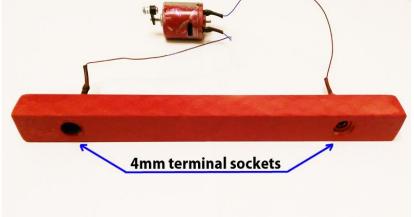
m _{copper} [kg]	0.201
T _{copper} [°C]	87
m _{Water} [kg]	0.265
T _{Water} [°C]	17
T _{Water & Copper} [°C]	21
c _{Water} [J/kg*K]	4198.9
Calculated value	
c _{Copper} [J/kg*K]	337.2
Real Value	
c _{Copper} [J/kg*K]	386.0

Acceleration

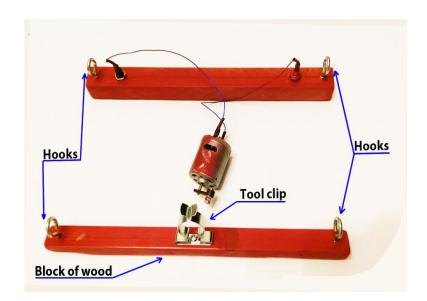
- Use a metal toy car
- Put extra 200g to 400g masses on top of the car
- Create a track using meter rulers
- Use a smartphone camera if possible

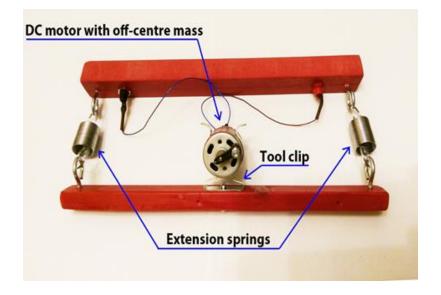


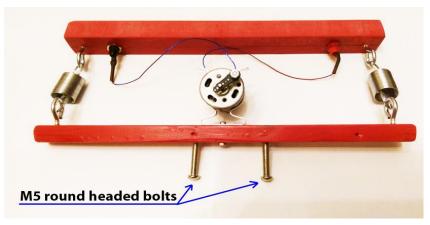

Acceleration - results


m _{Car} = 461 g	F = 0.2 N	m _{Car} = 461 g	F = 0.4 N
L [cm]	t [s]	L [cm]	t [s]
20.0	0.94	20.0	0.77
40.0	1.77	40.0	1.38
60.0	2.44	60.0	1.91
80.0	2.89	80.0	2.30
100.0	3.16	100.0	2.44
F = 0.2 N	m _{car} = 261 g	F = 0.4 N	m _{Car} = 461 g
L [cm]	t [s]	L [cm]	t [s]
20.0	0.64	20.0	0.59
40.0	1.13	40.0	1.03
60.0	1.52	60.0	1.43
80.0	1.77	80.0	1.65
100.0	1.92	100.0	1.75

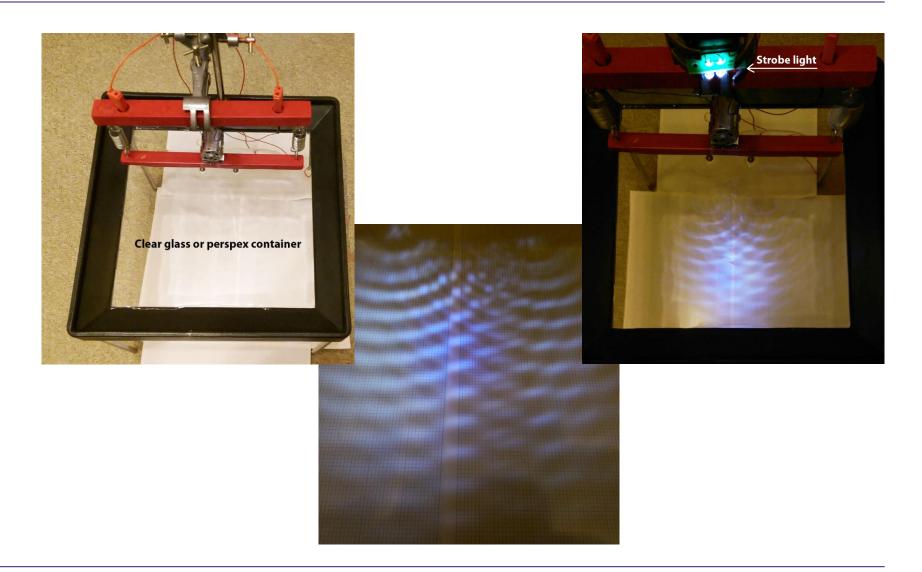
DIY ripple tank







DIY ripple tank



DIY ripple tank

Making a Leslie "can"

Making a Leslie "can"

Exactly same results as using Leslie cube.

How did we do?

- Please rate this session on the Sched Conference app.
- Using the post-its provided, please write:
 - one thing you enjoyed about our session or will take away for your teaching
 - one thing you feel could be improved.
- Stick these on the feedback poster as you leave.

Get in touch

Contact us aqa.org.uk/contact-us

Customer Support Team 01483 477756 gcsescience@aqa.org.uk

Events Team
0161 696 5994
events@aqa.org.uk
aqa.org.uk/professional-development

Thank you