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PREDICTIVE MODELS OF QUESTION DIFFICULTY

A critical review of the literature

Abstract

Recent decades have seen a proliferation of research into the identification and manipulation of

question difficulty factors.  This paper evaluates three predictive models of question difficulty, each of

which provides valuable insights into some of the successes and potential pitfalls involved in the

process of delivering an examination question at a specific level of difficulty.  In the light of these

insights, the viability of developing a unified model of question difficulty applicable across item types

and subject domains is assessed.  The paper concludes that for any such model to be useful it may

have to sacrifice a degree of rule-based precision in favour of flexibility and responsiveness.

Introduction

Imagine the following scenario: you are a 16-year-old student nervously waiting to begin a GCSE

Mathematics examination.  The invigilator signals that you may begin and you turn over the front page

of the paper to discover the following question; ‘ ?    =+ 32
32 ’.  Now compare that to the situation

where the opening question is as follows;

‘Given that, for ,de0
1

0
xx  I  ,  n

xn

  
n �=≥  prove that

.1,e
1

  n nI -   I
-nn

≥= ’

It does not require a sophisticated imagination to predict that the two questions described above will

provoke two very different reactions from candidates and may produce very different levels of

performance.  Formally understanding precisely why this is so is an issue that strikes at the very heart

of the design and implementation of public examinations; that is, what makes an examination question

difficult?

Almost anyone who has ever taken a written examination in any subject will believe they intuitively

know the difference between an easy question and a difficult one.  Similarly, the manipulation of

question difficulty is a complex task that many question-setters appear to achieve through application

of tacit informal knowledge, or what we might term ‘intuition,’ and although they are often successful in

this endeavour it is nevertheless a somewhat inexact science.  If one could formalise these implicit

processes it would enable question-setters to target questions at specific levels of difficulty appropriate

to particular candidate groups, thereby better assessing the full range of student abilities.
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Unfortunately, development of a precise, flexible, and diverse model of question difficulty ― one that is

of equal utility across item and subject types ― is hampered by the fact that the assessment

objectives, formats and assessment criteria for examination questions will vary both between and

within subject domains.  For this reason, much of the research to date has been both subject- and

item-specific, developing and testing theories and models to account for differential levels of difficulty

within very homogenous sets of item-types.  Examples of these are analogy problems and other non-

verbal reasoning items such as those prevalent on psychometric tests purporting to gauge general

intelligence (Mulholland, Pellegrino & Glaser, 1980; Sternberg, 1977, 1979, 1982), short answer

language comprehension questions such as those found on English and Modern Foreign Language

papers in the United Kingdom (Pollitt & Ahmed, 1999) and an assortment of problems of the kind that

are found on Graduate Record Examinations (GRE) in the United States such as (algebraic)

Generating Examples (Katz, Lipps & Trafton, 2002), Sentence Completion (Sheehan & Mislevy,

2001), Analytical Reasoning (Boldt, 1998; Chalifour & Powers, 1988), Verbal Discretes (Adams,

Carson & Cureton, 1993), and Reading Comprehension (Freedie & Kostin, 1992).

While some authors have made commendable strides towards developing more generic models of

question difficulty (e.g., Pollitt & Ahmed, 1999; Pollitt, Entwistle, Hutchinson & de Luca, 1985), these

have been hindered by the fact that any gains in universality have incurred inevitable costs to levels of

detail.  This partly explains the inadequate pool of published empirical evidence testing the efficacy,

practicality, and generality of their application.  Acknowledging this is less a criticism than recognition

of the inevitable limitations that any generic model must, by definition, contain.

Before exploring these theories in more detail, it is important to define more specifically what is meant

by question difficulty.  Pollitt et al. (1985) and Ahmed and Pollitt (1999), for example, draw several

useful distinctions that will be partially adopted in this paper.  ‘Concept’ difficulty, they argue, is

concerned with the inherent conceptual complexity of the subject matter and is determined by the

degree to which the concepts involved in a question are abstract or concrete.  ‘Process’ difficulty

concerns the difficulty of the cognitive operations and the degree to which they utilise finite cognitive

resources.  ‘Question’ difficulty refers to the linguistic and structural properties of the question and the

appropriate use of mark schemes.  Adapting these classifications, the present paper distinguishes

between ‘intrinsic’ content-bound question difficulty and ‘surface’ format-bound question difficulty.

Intrinsic difficulty is taken as a more inclusive term, incorporating ‘concept’ and ‘process’ difficulty,

regarding these as inextricably linked.  As such it refers to the difficulty imposed on candidates

because of the cognitive demands placed on them, whether conceptual, analytical, memory-based, or

otherwise.  Furthermore, because the ‘concept’ difficulty of questions is often highly subject-specific

(Ahmed & Pollitt, 1999), determination of intrinsic difficulty factors is also likely to be highly item- or

subject-specific.  Surface difficulty, which one might expect to be more readily generalised across

subjects and item-types, refers to the linguistic, structural and visual style of questions and the

flexibility, transparency and reward structure of mark schemes.  The contrast between intrinsic and

surface difficulty is a particularly important one because many papers that purport to tackle the issue
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of question or item difficulty frequently address one of these main parameters without adequately

explaining or controlling for the other.

Pollitt et al. (1985) further differentiate between legitimate and illegitimate sources of question

difficulty.  Legitimate sources of question difficulty are those that intentionally and transparently seek

to assess skills or knowledge representative of a level of aptitude or proficiency in a subject.

Conversely, illegitimate question difficulty is indicative of a communication failure between two or more

of the ‘characters’ in the assessment dynamic; the question setter, the candidate and the marker.  In

the latter scenario, a candidate may find a question difficult and hence fail to score marks, not through

any lack of proficiency in the subject matter, but because the question fails to convey its specific task

demands or makes demands that are beyond the realm of the subject area.  While identifying

illegitimate sources of difficulty can prove profitable in itself, this paper is primarily concerned with

identifying item features that predict legitimate sources of question difficulty.

The present review is intentionally selective, focussing on three of the most insightful models of

question difficulty to have emerged from the literature, two of which are item- or subject-specific and

one which is more generic, each of which is capable of furthering our understanding of question

difficulty.
1
  In two main sections it will deal with theories concerning item attributes that range from

intrinsic conceptual task demands to syntactic and structural features of question design, focussing in

greatest detail on the more theory-driven former.  Furthermore, by collating and adapting common

themes within this body of work, it seeks to assess the feasibility of developing a unified framework by

which question setters can achieve what some already intuitively accomplish; deliver a question at a

specific and legitimate level of difficulty.  As Pollitt et al. (1985) note, this is a task that at present

“bears more resemblance to a complex, perceptual art-form than a predictive science” (p. 28).

Intrinsic Question Difficulty

Cognitive Modelling of Answer Generation

It would seem that fundamental to understanding the ‘intrinsic’ features of an examination question

that contribute to its difficulty, is first acquiring an understanding of the inherent cognitive demands

that are placed on a candidate in the process of generating an answer.  The present section explores

the work of several authors who have applied information processing approaches to the

deconstruction and subsequent re-construction of certain types of examination questions, ultimately

with a view to manipulating item difficulty.

                                                     

1
 In addition to other largely item-specific predictive models of question difficulty (see, e.g., Adams et al., 1993; Attali &

Goldschmidt, 1996; Freedie & Kostin, 1992; Sheehan & Mislevy, 2001), which the reader may find of interest, there are a

number of related issues concerning item difficulty including research exploring difficulty factors (intrinsic and surface; see, e.g.,

Fisher-Hoch, Hughes, & Bramley; 1997; Pollitt et al., 1985) and theoretical foundations for the distinction between difficult and

easy questions (e.g., Malpas & Brown, 1974).
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The Cognitive Components Approach

Sternberg (1977, 1979, 1982) has applied a ‘cognitive components’ approach (Pellegrino & Glaser,

1979) to understanding the series of mental processes involved in solving non-verbal reasoning tasks,

particularly analogy problems of the kind illustrated in Figure 1 (see Smith, 1986 for a detailed review

of this work).  Despite the narrow focus of the model, its instinctive appeal and versatility renders it the

derivational basis of some other more generic accounts of question difficulty and merits its early

inclusion in this discussion.

Analogy item types, whether verbal, pictorial, or geometric (e.g., Figure 1), take the form “A is to B as

C is to ?”.  Sternberg (1977) hypothesised that a series of roughly sequential (and at times cyclical)

cognitive steps or ‘components’ could be identified as integral to the solution of such a problem.  A

summary of these cognitive components is presented in Table 1.  The first step is one of encoding,

whereby the candidate translates the simple notation of ‘A’ and ‘B’ into the geometric shapes (or

words/pictures) that they represent.  By a process of inference the candidate then deciphers the exact

nature of the relationship between these two shapes.  Subsequently, they recognise, by mapping, the

features of C that make it an analogy of A and then deduce the solution to the problem by application

of the inferred A-B relationship on to C.  Optionally, they might select and justify the correct solution

from the choice of distracters and finally they must generate a response.

Table 1: Sternberg’s (1977) hypothesised cognitive components for the solution of analogy

item types

Cognitive
component Description

➊ encoding Translating simple notation into representative words or images

➋ inference Determining the relationship between A and B

➌ mapping Determining the relationship between A and C

➍ application Transforming C according to the inferred rule(s)

➎ justification Optional stage of checking the answer if it doesn’t seem obviously correct

➏ response Indicating or presenting the selected answer

Sternberg (1977, 1979) hypothesised that changes to the complexity of components ➋ , ➌  and ➍

(inference, mapping and application) would have the greatest impact on the overall difficulty of

geometric analogies.  To illustrate this point, let us first examine how this cognitive components model

informs the solution process of a comparatively simple analogy problem of the kind illustrated in Figure

1 and compare this to the solution of a more complex analogy problem such as that depicted in Figure

2.  One can see that in Figure 1 images A and B may each be described as comprising of two relevant

geometric features or ‘elements’ (Smith, 1986, p. 126): shape and fill.  The tasks of perceiving or

recognising these might be seen as the cognitive ‘sub-components’ of Sternberg’s encoding (➊ )
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component.  Similarly, one can infer (➋ ) that the relationship between A and B may be characterised

by one or more transformations to some or all of these elements.  In this case, image B represents a

simple ‘reduction’ in the size of image A.  Mapping (➌ ) from A to C one observes that C is different but

analogous to A.  Applying (➍ ) the single simple transformation of a ‘reduction’ onto the shape of

image C, we can select (➏ ) distracter ‘c’ as the correct solution with relative ease.

Figure 1: Example of a simple analogy item type (adapted from Smith, 1986)

Figure 2 below is an example of a more complex analogy item and illustrates what happens when

components ➊  and ➋  are comprised of a number of more complicated sub-components.  This time

images A and B may be described as comprising of three notable or relevant geometric elements:

shape, dimensionality (i.e., 2D or 3D) and fill.  Furthermore, inferring the relationship between A and B

in this example is more difficult because two out of three of these elements have been subjected to

one or more transformation each; the shape has been rotated by 180° and reduced in size, the fill has

been rotated by 90°, while dimensionality remains constant.  The subsequent components of the task

can be similarly dissected into constituent parts for the mapping of C, the application of the

aforementioned transformations to C, and the selection (and possible justification) of the response.

Therefore, not only is the problem more difficult by virtue of the increased number of sub-components

involved in the encoding and inference stages, but the student must also do more ‘work’ for each of

the subsequent components of mapping and application.  Consequently, selection of the correct

answer (‘e’) becomes more time-consuming and error-prone.  In contrast, simply changing the

complexity of the images themselves without altering the relationship between them (i.e., manipulating

component ➊  (encoding) but not component ➋  (inference)) is unlikely to be nearly as challenging to

the student.

Below are two figures (A and B) which go together to make a pair.  Then there is a third figure (C)

and a choice of five more (a to e).  Choose which of the five makes a pair with the third figure, like

the first pair.

   A      B C

  a        b c   d   e

: ?
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Figure 2: Example of a more complex analogy item type

Predictive validity

In terms of item design, the advantages of the cognitive components approach are obvious.  Not only

does Sternberg’s (1977) model identify the main sources of differential levels of difficulty between

different non-verbal reasoning items, but by identifying the components and sub-components of a

question task, one can also attempt to predict the specific level of difficulty of individual questions.

Assuming a simple additive model of question difficulty, Sternberg proposed that the difficulty level of

a question as a whole was comprised of the sum of the difficulty of each of the individual components

(which was in turn dependent upon the difficulty of the sub-components), multiplied by the number of

times each component was executed.  In other words, one could predict the difficulty of a question by

breaking the task down into the smallest of cognitive units, or steps, assigning a uniform difficulty

quotient to each, and then simply ‘totting’ these all up.  The greater the number of units, the longer the

task would take to complete and the more opportunity one had to make errors along the way.

A systematic and empirical study of analogy problems conducted by Mulholland et al. (1980) provides

some evidence in favour of this cognitive components approach.  However, as well as highlighting the

successes of Sternberg’s (1977) model of analogy item difficulty, their study also illuminates the

model’s failures, particularly in its assumption of additive or linear increments in difficulty.  Mulholland

et al. presented participants with various permutations of analogy problems containing between one

and three stimulus elements (sub-components of the encoding component), and between one and

three transformations (sub-components of the inference component).  Subsequently, they measured

the participants’ solution times and error rates.  They found that if the number of transformations (e.g.,

reduction or rotation) was held constant, increasing the number of elements (e.g., shape and size)

produced a linear additive increase in solution times.  The same was true if the number of elements

was held constant and the number of transformations increased.  Up to this point, Sternberg’s

assumption of linearity held true.  However, Mulholland et al.’s findings on both measures of item

difficulty (solution times and error rates) demonstrated an interaction between the number of elements

and the number of transformations featured in a problem.  Specifically, any increase in solution times

:

Below are two figures (A and B) which go together to make a pair.  Then there is a third figure (C)

and a choice of five more (a to e).  Choose which of the five makes a pair with the third figure, like

the first pair.

A    B C

a b   c    d    e

?
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resulting from a greater number of transformations was aggravated by increasing numbers of

elements and vice versa.  In other words, any increase in item difficulty as a result of greater

complexity in either of these components (as reflected in longer response latencies) was compounded

by concurrent complexity in the other.

The findings with regard to error rates (as opposed to solution times) were slightly less straightforward.

As would be expected from a linear model, higher error rates were incurred with greater numbers of

transformations.  Interestingly, this was not the case with higher numbers of elements; seeming to

confirm, at least in part, Sternberg’s predictions that changes to the inference component would have

a greater impact on difficulty than changes to the encoding component.  However, crucially, it was not

merely the number of transformations per se, but the number of transformations per element that had

the greatest impact on item difficulty.  Multiple transformations to a single element produced many

more errors than did the same number of single transformations to different elements even though the

total number of cognitive processes remained constant.  Item difficulty on analogy problems, it

seemed, could not be predicted by mere numbers of components and sub-components because one

type of information processing (e.g., encoding) appeared to interact ‘antagonistically’ with other types

of information processing (e.g., inference).

So why does the assumption of linearity in analogy item-difficulty prediction break down at higher

levels of item complexity?  Mulholland et al.’s (1980) explanation invokes Baddeley’s (Hitch &

Baddeley, 1976) seminal ‘working memory’ construct; so pervasive in theories of learning and memory

that, as Byrne (2000) notes, some researchers have claimed that it may be the principal operational

source of individual differences in cognitive ability.  Baddeley proposed that one of the most limiting

factors in human information processing is short-term memory capacity, more specifically the capacity

of the ‘working’ sub-system of short-term memory in which new information is briefly held and rapidly

processed in conjunction with learned information retrieved from long-term memory.  It is well-

documented that the average numbers of ‘bits’ of information that can be stored in working memory is

seven (plus or minus two) at any given time, although individuals will differ on exact numbers (Miller,

1956; Baddeley, 1994).  Should one encounter another ‘bit’ of information that requires processing

during this time, the efficiency of the whole system deteriorates because older information becomes

more difficult to retrieve and new information becomes subject to concomitant loss or ‘decay’.

Consequently, any task involving working memory (which would appear to be most cognitive tasks)

will take longer to complete and be more prone to errors when working memory capacity is saturated.

Analogy items comprising of multiple transformations to single elements are more difficult than those

comprising of single transformations to multiple elements because in the former the transformations

must be performed concurrently whereas in the latter they may be performed sequentially.  The first

type of processing requires more information to be stored in working memory simultaneously.

Further support for the role of working memory in the determination of item difficulty has come from

investigations into a variety of other tasks such as letter series completion (Kotovsky & Simon, 1973),

numerical analogies and number series completion (Holzman, Pellegrino & Glaser, 1982, 1983).
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Furthermore, working memory appears to be a particularly limiting factor in children’s cognitive

performance, many of whom have frequent experience of the public examination system.  As such,

one could argue that in terms of question difficulty, working memory appears to be both the strongest

and weakest link in the chain of information processing.  Appreciation of its role is central to the

validity of any predictive model of difficulty.

The instructive simplicity of Sternberg’s (1977) model of item difficulty belies another important

shortcoming.  By neatly dissecting a problem into cognitive ‘chunks’ or sub-components, whether

broad or specific, one fails to adequately consider the differences that will occur in the complexity of

individual sub-components by virtue of the type of task they may involve.  For example, the model

assumes that the cognitive demand involved in reflecting an image is equivalent to that involved in

enlarging it.  This is a point that Whitely and Schneider (1981) recognised as crucial to any model of

analogy item difficulty.  They found that one could better predict difficulty measures of geometric

analogy items if, instead of merely counting the numbers of transformations, one distinguished

between different types of transformations, particularly spatial versus non-spatial ones, and weighted

them accordingly.

Concluding comments

It is clear that Sternberg’s (1977) cognitive components approach to modelling the difficulty of non-

verbal reasoning items is not without its limitations.  It does not adequately compensate for the

limitations of working memory (Holzman et al., 1982, 1983; Mulholland et al., 1980) and it treats all of

the sub-components within a component (i.e., the transformations within the inference component)

equally when their impact on item difficulty is plainly not uniform.  Neither of these problems is

necessarily insurmountable and both might be remedied with some adjustment although the exact

form of the required modifications and their ease of implementation are questionable.  Therefore, while

Sternberg’s cognitive components model is no panacea to the tricky issue of predicting question

difficulty, it does enable one to derive a clear operational guide to the construction of analogy

problems and many other non-verbal reasoning items, albeit with some fine-tuning.  The next section

examines whether a similar approach might be fruitfully extended to other question types.

Pollitt and Ahmed’s (1999) Model of the Question Answering Process

Over recent years, a number of researchers from the same research group have endeavoured to

extend and adapt the item-specific cognitive components approach to broader models with more

generalised applicability.  The work of Alastair Pollitt has featured heavily in this arena (Ahmed &

Pollitt, 1999; Pollitt & Ahmed, 1999; Pollitt et al., 1985; Pollitt & Hutchinson, 1987).  The Language

Comprehension Model (Pollitt & Ahmed, 1999) is just such an attempt at diversification which seeks to

explain the sources of difficulty observed in reading comprehension questions with a view to

representing the key psychological processes involved in generating answers to written questions in

general.  Note that while the model draws heavily from the component view of mental processes
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advocated by Sternberg (1977), in contrast to Sternberg’s model which relates exclusively to non-

verbal reasoning items, it deals more generally with written question types that for the most part

require verbal responses, although it does not explicitly restrict itself to only these.

At its simplest Pollitt and Ahmed’s (1999) model defines the sequence of conscious and unconscious

mental activities that the student must engage in when responding to a reading comprehension item.

Such items typically comprise a piece of text followed by short-answer questions.  After reading the

text in question the student proceeds by understanding the question, searching their mental

representation of the read text for relevant part(s), interpreting these mental representations, and

finally composing the answer.  Although these stages are then further broken down into as many as

44 smaller steps, which are no doubt more subject specific, the authors propose that the basic

processes are essentially the same irrespective of subject matter (Ahmed & Pollitt, 1999; Pollitt &

Ahmed, 1999).  Pollitt and Ahmed argue that the secret to translating this model from language

comprehension to all examination questions is simply in replacing ‘text’ with ‘subject’ and making a

few logical amendments.  More specifically, they contend that understanding a subject is simply a

macro-level version of comprehending a language or, as they state, “understanding a story” (p. 5).

Consequently, it may be similarly broken down into corresponding processes.

Table 2 shows how these supposedly equivalent processes are conceptualised: after their prior

learning of the subject the student proceeds by reading and understanding the question, searching

their knowledge of the subject for relevant topics, strategies or skills, interpreting this material, and

finally the process of ‘composing an answer’ is sub-divided into generating a solution and

composing a written answer.  Depending on the precise task demands of the question, these

processes may be conscious or unconscious, they will often occur in rapid succession, may

sometimes repeat cyclically, and frequently they may subsume or overlap with each other.

Table 2: Development of the Question Answering Model (‘QAM’) from the Language

Comprehension Model

Language Comprehension
Processes

General Question Answering
Processes or ‘Stages’ ‘QAM’ Stage Labels

reading the text learning the subject Learning

understanding the question understanding the question Reading

searching the mental
representations of the text for the
relevant part(s)

searching (and accessing)
relevant aspects of the subject
from memory

Searching

interpreting the parts of the
mental representation

re-interpreting stored knowledge
to match the question

Interpreting

generating a response to the
question

Solving

composing the answer
writing an answer for the
examiner to read

Composing
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When Pollitt and Ahmed’s (1999) model of the question answering process is placed side-by-side with

Sternberg’s (1977) cognitive component analysis of analogy problem solving model we are faced with

an interesting paradox, as depicted in Figure 3.  While both models share inescapable similarities, one

might also perceive them as lying on diametrically opposite extremes of at least two, roughly parallel

continua: the cognitive components model is intentionally subject- and item-specific while the question

answering process is intentionally generic, transferring across subject and item types.  The cognitive

components model is tightly structured and prescriptive at a micro-level, while in relative terms the

question answering model is loosely structured and vague at a macro-level.  There are nonetheless

common features to both models.

Figure 3: Comparison of Pollitt and Ahmed’s Question Answering Model (‘QAM’; 1999) with

Sternberg’s Cognitive Components Model (‘CCM’; 1977)

Pollitt and Ahmed (1999) highlight the parallels between Sternberg’s cognitive components and their

generalised question answering stages.  The comparisons identify the functional similarities between

the two approaches well.  It is apparent, for example, that the process of ‘understanding the question’

seems to engender similar mental activities to Sternberg’s encoding and inference components.

Furthermore, one cannot escape the fact that Sternberg’s model works best when one identifies the

sub-components of the question task as well as the components.  Item difficulty will then depend upon

the number and interaction of different types of sub-components.  Similarly, Ahmed and Pollitt (1999)

recognise that stage one of their question answering model (‘understanding the question’) consists of

numerous mental operations that contribute to the cognitive demands and conceptual complexity of

the question.  These they liken to ‘hurdles’ that the student must overcome in order to produce an

answer, the ‘number’ and ‘height’ of which will contribute to question difficulty.  Such a comparison

also exposes an important weakness of the question answering model: we have previously seen that

minor specific adjustments to both the encoding and the inferring components, especially in

combination, can yield quite large increments in difficulty on analogy problems.  Subsuming these

components into one process, which the question answering model does, is unlikely to be helpful

when it comes to determining intrinsic cognitive sources of question difficulty.

QAM (Pollitt &
Ahmed, 1999)

CCM (Sternberg,
1977)

‘Stages’ Sub-stages/-components ‘Components’

understanding
the question

encoding and
inferring

Generic searching
memory for

relevant material
mapping

Item-specific

interpreting
stored

knowledge
application

solving and
generating a

response
justification

Loosely
structured composing an

answer

Identification
of these are
necessary

before items
can be

manipulated
successfully

response

Tightly
structured

Debra DhillonPredictive models of question difficulty



Centre for Education Research and Policy 

 

 
 
  

11

Predictive validity

Pollitt and Ahmed’s (1999) model of the question answering process seems robust in so far as it seeks

to draw on a variety of theoretically relevant fields within cognitive psychology concerned with learning

and memory, problem solving, attention and language comprehension.  It is both complimented and

driven by empirical, though largely post hoc, investigations into Sources of Difficulty and Easiness

(SODs and SOEs) in a selection of subjects (Ahmed & Pollitt, 1999; Hughes, Pollitt & Ahmed, 1998;

Pollitt et al., 1985).  In addition, awareness of the processing stages advised by Pollitt and Ahmed’s

(1999) model will not only facilitate the identification (and manipulation) of legitimate sources of

difficulty but also the identification (and elimination) of illegitimate sources of difficulty.  The question-

setter can then better foresee hurdles at which the student will fall through no fault of their own.

Nevertheless, the utility of the model is not empirically confirmed and may be a major limiting factor,

especially for questions that are answered in a less verbal manner.  This raises the question of how

conveniently the generic Question Answering Model can be applied to the manipulation of difficulty of

specific novel item types.

Concluding comments

Where Pollitt and Ahmed’s (1999) model seems undoubtedly useful is in signalling the more generic

sub-processes within the whole question answering process that item designers should keep in mind

when attempting to formulate a question to a certain level of difficulty.  In other words, the major

advantage of the model is that unlike Sternberg’s (1977) highly item-specific model, it provides an

invaluable starting point to deconstructing the answering process of almost any kind of question; a

pre-requisite to any attempted reconstruction of versions of varying difficulty.  If the question

answering model truly is a generic path-way describing the cognitive behaviour of question-takers,

then it should facilitate this task.

It is at this point, however, that one is struck by its generality.  Application of the model as it is laid out

above, without any task- or subject-specific elaboration does not seem to be particularly beneficial

because without identification of the idiosyncratic sub-stages, any combination of which might

influence demand differently, the process appears unhelpful.  Unfortunately, identification of these is

not always immediately obvious.  They must often be thought through oneself by actually proceeding

to solve the problem.  The reader might have noticed that if they have not already paused to tackle

some of the questions depicted in the paper so far, the compulsion to do so is difficult to resist

because only in doing so do the components and sub-components of these problems become more

tangible.  The danger is, of course, that these components and sub-components may differ between

individuals depending upon the solution strategy adopted.

Cognitive Modelling of Algebraic Word Problems

A large and varied body of research has come about as a result of academic interest in various

aspects of item types found on the Graduate Record Examinations (GRE) in the United States.  Within
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several studies to emerge from the same research team, one in particular has sought to systematically

identify and manipulate features of the Generating Examples item type that may predict question

difficulty (Katz et al., 2002).  While this work is admittedly item-specific, it demands inclusion because

of its rigorous empirical foundations and potentially far-reaching implications.

The Generating Examples (GE) item type represents a class of mathematical (algebraic) word

problems in which examinees must generate examples of potential solutions that simultaneously meet

various mutual constraints.  Figure 4 below provides a typical example of just such a problem in which

implicit constraints are imposed on any (correct) solution although it is apparent that some constraints,

such as the requirement for the numbers of stamps to be positive integers, are more implicit than are

others.

Figure 4: A Generating Examples (GE) item (reproduced from Katz et al., 2002, p. 2)

The key to answering this question correctly is in explicitly recognising the implicit constraints

contained within the wording of the problem; equivalent to encoding and inferring in the cognitive

components paradigm or to reading (and understanding) in the question answering model.  One way

that the problem solver may do this is by representing these constraints in the form of algebraic

equations or inequalities such as those depicted in Figure 5.  However, according to Katz et al. (2002)

the most notable feature of the answering process is that despite the algebraic nature of the problem,

one cannot derive a unique correct answer by straightforward application of a standard algebraic

technique such as the solution of simultaneous equations.  Essentially, the problem posed in Figure 4

is ‘under-determined’ because at least one of the constraints (such as the fact that the total number of

stamps must exceed 25) is not an ‘equation’ at all, but an inequality.  Katz et al. argue that in order to

answer such a problem correctly one must generate examples of potential solutions and then check

that these do not violate any of the constraints.  One might call this a ‘bottom-up’ method as it involves

generating a possible solution and then working backwards.  If the problem solver’s first estimate is

not correct ― and no matter how sophisticated their algebra skills, the problem does not provide

enough information to guarantee that it will be ― they will have to try again.

Jamal wants to buy some standard-issue stamps at $0.25 each and some commemorative

stamps at $0.40 each.  He wants more than 25 stamps, including at least two of each, but can

spend no more than $10.00

Question: What is one possibility for the number of standard-issue stamps and

commemorative stamps that Jamal could buy?
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Figure 5: Explicit algebraic representation of constraints posed in Figure 4

The informal and ostensibly crude ‘bottom-up’ cognitive model described by Katz et al. (2002) for

solving GE items has been variously termed a ‘generate-and-test’ strategy (Nhouyvanisvong, Katz, &

Singley, 1997) and a ‘guess-and-check’ heuristic.  Yet its application to the solution of GE items,

precisely because of their under-determined nature, has shown to be both effective (Nhouyvanisvong

et al., 1997) and widespread (Katz & Berger, 1995).  This is even the case among mathematically able

students who are entirely capable of implementing more traditional and skilful algebraic manipulations

(Katz, Bennett, & Berger, 2000; Tabachneck, Koedinger, & Nathan, 1995).

By cognitively modelling the stages of the generate-and-test method outlined above, Katz et al. (2002)

proposed that one should be able to increase the difficulty of a GE item, quite simply, by increasing

the amount of testing the student must do.  Both the cognitive load and the potential for errors would

consequently be increased.  In practice, one might achieve this by manipulating one or both of two

processes.  First, one could increase the number of constraints against which any estimate must be

checked.  Second, reducing the solution density of the item (the ratio of correct solutions to all

possible answers) and hence also reducing the likelihood of a student generating a correct example,

would require the student to generate further solutions for testing.

At first sight, it would seem reasonable to suppose that increasing the number of constraints

embedded within the item stem would serve both of these purposes, requiring the student to test their

estimate against yet another constraint, and further limiting the range of responses that will correctly

satisfy all conditions.  Yet as these and other authors note (Bennett, Morley, Quardt, Rock, & Katz,

1999; Nhouyvanisvong & Katz, 1998), not all constraints serve the same purpose.  Some constraints,

known as generator constraints, will facilitate the process of generating a potential solution without

increasing the testing load and will consequently have little effect on item difficulty, indeed sometimes

making an item easier.  For example, addition of the constraint that C > 14 to the problem in Figure 4

(Katz et al., 2002), is likely to focus the initial estimate of commemorative stamps to a number greater

than 14 and make testing of the estimate against it superfluous.  Other constraints, which

Nhouyvanisvong and Katz identify as verifier constraints, are used to verify the accuracy of a solution.

By increasing the amount of testing required, they serve to increase cognitive load and the potential

for mathematical errors.  The constraint that S > 10C, for example, again applied to the problem in

Figure 4, does not help in the generation of a potential solution, but does increase the chances of the

student making a mathematical error when they come to checking their estimate(s).

1  integers   are C andS >

25>+   CS

0010400250 ...   C S ≤+
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The solution density of a problem may be reduced either by addition of a constraint (generator or

verifier) or by changing an existing constraint.  Using the previous examples, one can see that addition

of the generator constraint that C > 14 reduces the solution density of the problem by making all

estimates where C ≤ 14 incorrect.  Addition of the verifier constraint that S > 10C or changing the

constraint that S, C > 1 to S, C > 2 should have a similar effect.  Clearly, reducing the number of

correct solutions, whichever method one employs, should make a GE item more difficult.  As will be

demonstrated in the next section, this issue is not quite this simple, but suffice it to say that the basic

premise of this prediction is as described.

In summary, Katz et al. (2002) predict that the addition of generator constraints to the item stem of GE

item types should have little or no effect on item difficulty.  In contrast, the addition of verifier

constraints should increase item difficulty by adding to the amount of testing that is required for each

potential solution that is generated.  If either constraint also reduces the solution density of the

problem, thereby reducing the chances that the estimate is correct, the difficulty of the item will be

further heightened.

Predictive Validity

At least two studies have provided post hoc evidence of differential functioning of verifier and

generator constraints such that the former were found to be associated with GE item difficulty while

the latter were not (Bennett et al., 1999; Nhouyvanisvong & Katz, 1998).  However, because neither

study systematically manipulated GE items according to the number and type of constraints

embedded within the item stem, they provide only weak evidence of a cause-and-effect relationship.

Katz et al. (2002), on the other hand, did precisely this.  After presenting participants with a pool of GE

items that varied independently according to the number of verifier constraints in the stem and/or

solution density they found that more verifier constraints and lower solution densities led to more

difficult and time-consuming items.  However, the predictive success of solution density was tempered

by the method used to manipulate it.  Item difficulty was not affected if the change in solution density

was due to the addition of a generator constraint.  To understand why this is the case, let us re-

examine the effect of adding the generator constraint that C > 14 to the problem that was depicted in

Figure 4.  In theory, this should make the problem more difficult by making all estimates where C ≤ 14

incorrect, thereby reducing solution density.  In practice, however, the constraint diverts the student

away from making these incorrect initial estimates ― that is, it limits the range of considered solutions.

Thus the student modifies their estimating behaviour, consciously or unconsciously, to compensate for

any change in solution density of the problem, making them no more likely to actually offer an

incorrect solution or to consequently need to generate another solution for testing.  This is an

important point and illustrates the futility of developing hard and fast rules for the manipulation of item

difficulty in the absence of any real understanding of how the subsequent changes might influence

students’ cognitive processing or test-taking behaviours.
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Concluding comments

It is not a controversial argument to suggest that increasing the amount of ‘work’ that a student must

do in order to answer a question will make that question more difficult.  The cognitive modelling of the

commonly used generate-and-test strategy for solving GE item types has enabled Katz et al. (2002) to

identify which out of two ostensibly similar additional features of the item stem actually result in

increased cognitive load; generator constraints or verifier constraints.  Similarly, by noting the

simultaneous and often mutually mitigating effects that certain constraints have, both on solution

density and on solution generation behaviour, one can avoid making overly simplistic predictions

regarding item difficulty.  In other words, cognitive modelling of this kind highlights the critical

distinction between function and form.

Surface Difficulty

Surface difficulty is format-bound and refers to the linguistic, structural and visual features of questions

and the flexibility, transparency and reward structure of mark schemes, both of which may either

temper or exacerbate the intrinsic difficulty of a question (Fisher-Hoch et al., 1997; Pollitt et al., 1985).

Such factors might be seen to encompass both the ‘scaffolding’ provided to students to support the

answering process and features of the mark scheme that legitimately reward the student where

appropriate, while allowing for consistency (and reliability) in marking.

Surface-Level ‘Scaffolding’ Features

Empirical work based on Pollitt et al.’s (1985) extensive research has lead to the identification of

surface-level Sources of Difficulty (SODs) and Sources of Easiness (SOEs) in examination questions

for 16-year-olds in a number of subjects.  Some of the subject-specific SODs and SOEs derived from

these post-hoc analyses of performance data have been confirmed by experimental studies which

have attempted to manipulate questions for trial with children (e.g., Ahmed & Pollitt, 1999; Fisher-

Hoch & Hughes, 1996) although their relative contributions to item difficulty vary.  These authors have

further attempted to identify general SODs and SOEs that they argue can be applied across almost all

subjects.  Some of these are represented in Table 3 below.

It is these generalised surface difficulty factors that remain relatively untested.  Moreover, while there

is a logical appeal to many of them, we have already observed that complex cognitive processes are

rarely amenable to simple transcribed manipulations and when they are they can sometimes be

vulnerable to surprise developments.  In the absence of any serious theoretical foundations, these as

yet untried and untested surface features are liable to have similarly unexpected interactions with

intrinsic difficulty manipulations.  At present, however, they represent the best available information

and as such are presented in this paper for the sake of completeness.
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Table 3: General Surface-Level Sources of Difficulty (SODs) and Sources of Easiness

(SOEs), adapted from Ahmed & Pollitt (1999) and Fisher-Hoch et al. (1997)

SODs and SOEs Description
Distractors in wording of
question

Information appears in question that was not required and may distract
from relevant information.

Highlighting
Key words and phrases, or of command words that tell the candidate
what to do.

Density of presentation Too much information condensed into too small an area.
Technical terms Use of technical terms where everyday language would suffice.

Response prompts
Structure, organisation or content of answer is prompted in question or
in cues.

Paper layout/sequence of
questions

Physical organisation of the question ordering and/or numbering could
support or hinder candidates.

Paper space for response Style and size of space allocated for response not appropriate.
Ambiguous resources Unclear resources (diagram, graph, table etc.) affecting performance.
Provision of leaders,
cues, clues, or examples

Question cues candidate into particular data or strategy.

Bulleting of information Key constraints, ideas, or requirements bulleted or similarly clarified

Mark Schemes

Devising an appropriate mark scheme to complement each question on an examination paper and of

the paper as a whole is as important in determining student performance (and hence item difficulty) as

constructing the questions is.  Unless the intrinsic demands of a question are reflected in the reward

structure of the mark scheme even a successful manipulation to intrinsic item difficulty will be a hollow

victory because candidates’ marks will not be a valid reflection of their performances.

Unfortunately, controlling the legitimacy, flexibility, transparency and reliability of the mark scheme can

be highly problematic because some of these requirements may at times be in opposition to each

other.  A recurrent theme within the question difficulty literature relates to the important constructs of

problem space (e.g., Pollitt & Ahmed, 1999) and outcome or solution space (e.g., Katz et al., 2002;

Marton & Saljo, 1976; Pollitt & Ahmed, 1999).  Problem space refers to the range of relevant

knowledge, skills, strategies, memories, concepts, relationships, and processes, any combination of

which might lead to a solution to the problem at hand.  Marton & Saljo’s (1976) important parallel

construct of solution space signifies the range of possible answers that might be offered by students in

response to a problem.

Crucially, it is only by predicting the full scope of problem spaces — all combinations of the knowledge

and strategies that might legitimately be applied to solving the problem — that we can predict all of the

possible solutions that students may give such that, “a perfect mark scheme is an evaluative

description of the whole outcome space” (Pollitt & Ahmed, 1999, p. 11).  In practise there is no doubt

that achieving this can be extremely challenging, but one can aim to optimise a mark scheme by

accommodating, as far as possible, both the problem and outcome spaces for each question.  One

might reasonably predict that the success of this endeavour will be determined in part by the size of

the problem and outcome spaces inherent to the particular problem and the degree of expertise the
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question setter has of the subject matter being assessed.  Perhaps the most important factor,

however, is the degree to which the ‘expert’ who sets the question can anticipate the methods of the

relative ‘novices’ who attempt it.

At present, for the preparation of question papers in the AQA, attempts to bridge the expert-novice

divide are subsumed by the role of the Scrutineer (formerly Assessor).  This involves “checking that

the questions can be answered in the time allowed, that there are no errors in the question paper and

that the mark scheme is in line with the question paper.  In most instances the paper will need to be

worked through from a candidate’s perspective” (AQA Question Paper Preparation Procedure File,

2002, p. 20, emphasis added).

Summary and Conclusions

Towards a Unified Framework of Question Difficulty?

Pollitt & Ahmed’s (1999; Ahmed & Pollitt, 1999; Hughes et al., 1998) work in further modifying

Sternberg’s ideas has yielded profitable contributions to understanding the generalised item

parameters that dictate difficulty, although at a cost to specificity.  It does not take an enormous leap

of the imagination to realise that if simply failing to differentiate between the various specific

transformations inherent to an analogy problem can lead to miscalculations of item difficulty, then

generalising across broad subject areas and topics will further compound this problem.  As a case in

point, failing to differentiate between, (i) the mental activities involved in comprehending a piece of text

and composing an answer, and (ii) those involved in comprehending (and executing) the solution to a

simultaneous equation, will vastly oversimplify a necessarily task-specific process.  This issue is a

practical observation that is more evident if one tries to globalise Pollitt and Ahmed’s model to more

heterogeneous problem solving tasks.  It is entirely possible that the question answering model is a

more useful tool than the cognitive components approach in questions requiring more verbally

constructed responses, which would imply that any dichotomy between the models is more one of

item-types (verbal versus non-verbal) than degrees of specificity.  Alternatively, it may be that it is only

ever intended as a preliminary guide and that it is necessarily with the aid of both qualitative protocol

analysis and quantitative subject- or item-level analysis, that it can be explicitly and usefully employed

to manipulate specific item-types.

Similarly, by virtue of his detailed piece-meal operational analysis of answer generation, Sternberg

(1977, 1979) has shown that a cognitive components approach to modelling item difficulty is a fruitful

means of constructing questions to prescribed levels of difficulty.  Nevertheless, the very strength of

his model — its specificity — also appears to be its weakness because in order to extend the model to

more heterogeneous problem solving tasks one must conduct a similarly painstaking task-specific

analysis for each one.  Whichever model one employs, therefore, it is likely that the item under

manipulation and the subject area it assesses will be the key factors determining utility.  So what this
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discussion boils down to is this: in order for the adjustment or calibration of intrinsic concept-bound

question difficulty to be successful, for each item type there will inevitably require careful step-by-step

scrutiny of intrinsic mental operations guided by one or both of the models discussed above.

Furthermore, this is a process which will often require the input of detailed specialist subject

knowledge, especially for items that are peculiar to a subject domain.

The models discussed in this paper also present other challenges to a unified framework of item

difficulty and demonstrate that the difficulty of a question is more than merely the sum of its parts.

One will recall, for example, Mulholland et al.’s (1980) careful and systematic test of Sternberg’s

(1977) predictive model of analogy item difficulty and the circumstances under which the assumptions

of linearity were violated.  Specifically, the major limiting factor in students’ performances was found to

be working memory.  Item difficulty was not only predicted by the number and complexity of the

cognitive components required for solution, but also by the way those component tasks were

combined and the simultaneously ensuing demands they placed on candidates’ finite cognitive

resources.

Sternberg’s (1977) predictions of item difficulty could be similarly complicated because the model

failed, for example, to take into account the difference between spatial and non-spatial transformations

(Whitely and Schneider, 1981), a criticism that Pollitt and Ahmed’s model seems particularly

susceptible to.  On the other hand, there are other, less obvious advantages to their model that can be

easily overlooked.  For example, it recognises that some questions will be more difficult than others

not because of the minute ‘mechanics’ of the cognitive tasks, but because before the task can even be

attempted the student must understand what is required of them and then search for or construct an

answering strategy.  They must understand the demands of the question and define its problem

space; determine the ‘how’ and ‘what’ of the task before they can tackle the actual ‘work’ ― a point

echoed within the vast problem-solving literature (e.g., Pólya, 1945).  Questions that specifically test

how well students can identify or construct novel or unfamiliar problem-solving strategies, in addition

to the knowledge required to actually apply the strategies, are likely to be less sensitive to ‘nuts and

bolts’ manipulations to cognitive components if these only influence the latter.

As a purely speculative point, changing the difficulty of such problem-solving questions may instead

be reliant on changing the size or familiarity of the problem space so that students can more or less

easily land on relevant material within the mass of irrelevant subject matter.  Perhaps one might

describe this as changing the ‘problem density’ of a problem in a manner akin to, but undoubtedly as

complicated as Katz et al.’s (2002) manipulations to solution density.  Thus, a question with a low

problem density might require the student to search a large body of learned material to find a unique

or relatively unfamiliar strategy, skill, or piece of information and may be difficult even if the ease of the

actual application of that material remains simple.  One does not pretend that any relationship

between problem density and question difficulty is straightforward, but it may nevertheless be an issue

worthy of empirical investigation.
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Finally, one should not overlook the contributions that authors such as Katz et al. (2002) have made to

the understanding of question difficulty.  Although their generate-and-test model may have at times

seemed technically convoluted, with little apparent application to generic issues of question difficulty,

their prediction that the solution density of a GE problem should impact on item difficulty may have

important wider implications.  It is possible that solution density influences the difficulty of not only

Generating Examples items, but the difficulty of all questions where candidates may respond by

estimating or guessing.  If so, anyone attempting to estimate the solution density of a problem is likely

to encounter similar obstacles as Katz et al., who defined solution density as the ratio of (finite) correct

answers to all possible (infinite) answers.  In practice, of course, they limited the solution space to all

possible reasonable answers, but definitions of reasonable may vary considerably from examiner to

examiner and, more importantly, between examiner and candidate.

In conclusion, developing a simple, rule-dependent model of question difficulty that can be precisely

transferred between item types may be an unrealistic goal.  As we have seen, cognitive processes are

interactive and sometimes antagonistic and may not be amenable to simplistic deconstruction.

Certainly, as discussed, some lessons can and should be learned from the models already developed.

It may, for example, be possible to identify common themes and pitfalls, to develop a more fluid and

dynamic model of question difficulty which does not claim exacting precision or hard and fast rules but

is adaptive to the peculiar cognitive demands of individual questions and subject domains.  Working

with such a model may require specialist knowledge of question demands and answering processes

from ‘experts’ with the insight to foresee the responses of ‘novices’; no easy task.  However, giving

straightforward and effective advice to test-setters without such interactive input will be difficult.

Lastly, development of any such model will require empirical support and validation in the form of

experimental studies that systematically manipulate questions for subsequent testing with student

populations.  Those seeking short cuts may be sadly disappointed.
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