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ABSTRACT 
Item Response Theory (IRT) models have been widely used to analyse test data and develop 
IRT-based tests. An important requirement in applying IRT models is the stability and accuracy 
of model parameters. One of the major factors that affects the stability and accuracy of model 
parameters is the size of samples used to calibrate the items. Substantial research work has 
been undertaken in the past to study the effect of sample size on the estimation of IRT model 
parameters using simulations. Most of the simulation studies have focused on homogeneous 
item types and involved the use of model-generated response data. An important limitation of 
such simulation studies is that the assumptions of the IRT models are strictly met. However, 
data from operational tests do not normally strictly meet the model assumptions. The work 
reported in this paper investigates the effect of sample size on the stability and accuracy of 
model parameters of the Partial Credit Model (PCM) for a large data set generated from a high-
stakes achievement test consisting of a mixture of dichotomous and polytomous items. Results 
from this study indicate that the level of stability and accuracy of model parameters is affected 
by the sample size, the number of categories of the items and the distribution of category 
scores within the items. The results obtained also suggest that the actual measurement errors 
associated with model parameters for polytomous items estimated from operational test data 
can be substantially higher than the model standard errors. It is furthermore suggested that the 
error introduced to true score equating using common items can be evaluated by a comparison 
with measurement errors inherent in the tests. 
 

 

BACKGROUND 
The accuracy and stability of Item Response Theory (IRT) model parameters have important 
implications in the analysis of test data and the development of IRT based tests. For example, 
Hambleton, Jones and Rogers (1993) found in their simulation study that the positive errors 
associated with the item discrimination index derived using the two parameter logistic model 
from samples of different sizes could produce tests with test information distributions which 
were substantially different from the true test information distribution. Chuah, Drasgow and 
Luecht (2006) have also found that the distribution of test information derived from parameters 
estimated using samples of different sizes can be substantially different from the information 
distribution derived using true parameters for a Computer Adaptive Sequential Test (CAST) 
implementing the three-parameter logistic model. However, they found little change in 
correlations between the ability estimate based on sample-estimated parameter values and that 
calculated using true parameter values among samples of different sizes. When test data are 
used to calibrate items using IRT software, both the model parameter estimates and associated 
measurement errors (model standard errors) are provided. The errors reflect the probabilistic 
nature of the IRT models and the degree to which the model fits the data. The probabilistic 
nature of the IRT models implies that sample size is an important factor that affects the 
accuracy and stability of the estimates of the model parameters. 
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Many simulation studies have been undertaken to investigate the effect of sample size on the 
estimation of IRT model parameters. For example, Wang and Chen (2005) have investigated 
how the item parameter recovery, standard error estimates and fit statistics are affected by 
sample size and test length for the Rasch model (Rasch, 1960) and the Rating Scale Model 
(RSM, see Andrich, 1979) using WINSTEPS (Linacre, 2006). De Ayala and Sava-Bolesta 
(1999) have studied the effect on item parameter estimation of the ratio of sample size to the 
number of model parameters and the latent trait distribution of the samples for the Nominal 
Response Model (NRM, see Bock, 1972). DeMars (2003) also studied the effect of sample size, 
test length, category size and sample ability distribution on parameter estimation for polytomous 
items with the NRM. Results from such studies generally indicate that the magnitude of the 
variation between sample estimates decreases with increasing sample size. The majority of the 
simulation studies focus on tests composed of homogeneous item types. 
 
One of the limitations of using pure simulations to study the effect of sample size on IRT item 
parameter estimation is that the model assumptions are strictly met, which will seldom be true 
for operational test data. There have also been studies that use operational data to conduct 
simulation studies investigating the sample size effect on model parameter estimation. For 
example, Swaminathan et al (2003) have used the large test dataset generated from the Law 
School Admissions Council tests to study the effect of sample size on the accuracy of 
parameter estimation for the one-parameter, two-parameter and three-parameter IRT models. 
They have also developed procedures for improving parameter estimation. Stone and Yumoto 
(2004) have used sub-samples from a large dichotomous dataset from the Knox’s Cube Test-
Revised (Stone, 2002) to investigate the sample size effect for Rasch/IRT parameter estimation. 
Smith et al. (2008) have studied the sample size effect on the stability of model fit statistics of 
the PCM and the Rating Scale model, using samples drawn from a large dataset collected from 
medical surveys on cancer patients. Their results demonstrated that the model t-statistics were 
sensitive to sample size for polytomous data, while the mean square statistics remained 
relatively stable. 
 
One important feature of the high-stakes tests provided by UK Awarding Bodies is the use of 
both dichotomous and polytomous items. Item response theory models have been increasingly 
used to analyse data from such high-stakes tests to ensure the comparability of standards 
between specifications and over time (e.g. Wheadon and Whitehouse, 2006; He and Wheadon, 
2008). IRT models are particularly suitable for equating tests containing common items or 
involving common persons. In view of the structure of these high-stakes tests, the PCM would 
appear to be the most appropriate IRT model. However, the use of PCM would require the 
estimation for a large number of model parameters and reservations have been expressed on 
the use of category measures for test equating, due to uncertainties associated with their 
stability. Stabilised estimates of model parameters are required for test equating in order to 
minimise equating error. Although many studies have been conducted to investigate the effect 
of sample size on model parameter estimation, little attention has been given to the sample size 
effect on the stability of category measures for tests containing both dichotomous and 
polytomous items. The work reported in this paper investigates the effect of sample size on the 
stability and accuracy of model parameters of the PCM, using samples drawn from a large data 
set collected from a high-stakes achievement test administered by the Assessment and 
Qualifications Alliance (AQA) to students aged 16 in June 2007. The effect of sample size on 
test equating has also been investigated using a worked example. 
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METHODOLOGY 
 
The Partial Credit Model 

The IRT model used in the present study is the PCM, which is widely used for analysing 
polytomous items. The PCM represents an extension of the Rasch model for dichotomous items 
(see Rasch, 1960; Wright and Stone, 1979; Masters, 1982; Wright and Masters, 1982). In the 
PCM, polytomous items are characterised by ordered score categories (see Masters, 1982; 
Wright and Masters, 1982; Masters and Evans, 1986). In the PCM, the probability ),( xP θ  of a 

person with ability θ , who scores x on a polytomous item with a maximum score m, can be 
expressed as: 
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In Equation (1), kδ  is the kth threshold location of the item on the latent trait continuum, which 

is also referred to as the item step difficulty. In PCM, the person score x on a polytomous item 
represents the counts of the ordered categories that have been successfully undertaken. 
Masters (1984) and Masters and Evans (1986) have used the model to construct calibrated item 
banks for questions containing multiple parts which are scored dichotomously. 
 
The AQA GCSE Mathematics B Specification 

The test studied here for illustrative purposes is an externally set and marked examination taken 
by pupils aged 16 in the UK. Mathematics is chosen because it offers a large sample size for 
which item-level data is available and contained a combination of item-types. The data is taken 
from the June 2007 administration of module 3 (43003H). The results from this test can be used 
to support applications for further study beyond age 16 and for employment purposes. Two tiers 
of entry are available; a lower (foundation) tier samples less demanding content from the 
domain, while a higher tier samples the more demanding content. This study uses the results 
from the higher tier test. Table 1 illustrates the structure of the test. 
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Table 1 Maximum marks of questions in the test. 
 

Item ID Maximum Mark  Item ID Maximum Mark 
1 1  17 2 
2 1  18* 2 
3 3  19 1 
4* 3  20* 2 
5* 2  21 2 
6* 2  22* 3 
7 3  23* 2 
8 2  24 2 
9 1  25 2 
10 1  26 1 
11 2  27 2 
12 1  28 2 
13 2  29 5 
14 3  30 2 
15 2  31 2 
16 3    

* link items between the tiers. 
 
 
 
Item Calibration Using the Population Data 

Responses from 49,120 students who took the higher tier test in a single administration were 
used to calibrate the items in the test using the PCM implemented in WINSTEPS. Table 2 
displays the category measures and associated errors exported from WINSTEPS for the test. 
The category measures vary from -2.82 logits to 3.48 logits, with a mean of 0 logits (the 
calibration was centred on item difficulty). The errors of measurement are generally either 0.01 
logits or 0.02 logits. Further analysis from WINSTEPS output indicated that categories of all the 
polytomous items are ordered. However, as is clear from Table 2, the majority of the 
polytomous items have disordered thresholds, suggesting that the distribution of the scores 
among the categories are not uniform for the items. Ideally items should have ordered 
thresholds, but they do not necessarily pose a threat to measurement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The effect of sample size on item parameter estimation for 
the partial credit model

Qingping He & Christopher Wheadon



Centre for Education Research and Policy 
 

 
 
 

 

 

5

 
 

Table 2 Category measures and associated errors of measurement, estimated using responses 
from the entire population of 49,120 students. 

 

Item ID Category Measure Error Item ID Category Measure Error 
1 1 -1.10 0.01 1 2.49 0.01 
2 1 -0.76 0.01 

17 
2 -1.81 0.01 

1 0.24 0.02 1 -1.07 0.01 
2 -2.41 0.02 

18* 
2 -1.25 0.01 

 
3 

3 -1.34 0.01 19 1 -0.95 0.01 
1 0.11 0.02 1 1.72 0.01 
2 -0.56 0.01 

20* 
2 -2.54 0.01 

 
4* 

3 -2.82 0.01 1 0.06 0.01 
1 0.98 0.01 

21 
2 -0.7 0.01 5* 

2 -2.48 0.01 1 0.57 0.01 
1 1.18 0.01 2 -0.68 0.01 6* 
2 -2.68 0.01 

 
22* 

3 -1.71 0.01 
1 -0.13 0.01 1 3.28 0.02 
2 3.48 0.01 

23* 
2 -0.21 0.02 

 
7 

3 -2.56 0.01 1 -0.59 0.02 
1 -0.93 0.01 

24 
2 -2.51 0.01 8 

2 -0.03 0.01 1 -0.06 0.01 
9 1 -0.33 0.01 

25 
2 1.47 0.01 

10 1 0.69 0.01 26 1 0.50 0.01 
1 1.80 0.01 1 2.35 0.01 11 
2 2.47 0.03 

27 
2 -1.06 0.01 

12 1 -0.07 0.01 1 2.04 0.01 
1 1.98 0.01 

28 
2 -1.26 0.01 13 

2 -1.96 0.01 1 2.45 0.01 
1 1.47 0.01 2 -0.98 0.01 
2 -0.09 0.01 3 0.28 0.01 

 
14 

3 -1.21 0.01 4 0.45 0.01 
1 1.38 0.01 

 
 

29 

5 -0.42 0.02 15 
2 -0.47 0.01 1 2.52 0.01 
1 2.94 0.01 

30 
2 -0.27 0.02 

2 1.43 0.02 1 0.67 0.01 
 

16 
3 -1.48 0.02 

 

31 
2 1.98 0.02 

* link items between the tiers. 
 
 
 

Investigating the Sample Size Effect on Parameter Estimation 

To study the effect of sample size on partial credit model parameter estimation, random 
samples with different sizes were drawn from the population using replacement sampling. Six 
sample sizes were investigated: 150, 300, 500, 1000, 2000 and 4000. For each sample size, 10 
replicates (repeated samples) were produced. The values of the PCM parameters and the 
associated statistics estimated using the whole population were treated as the standard or true 
model parameter values. The differences between the parameter values estimated using 
individual samples and the model true values reflect the influence of sample size on sample 
estimates. The root mean square errors (RMSEs) have frequently been used to compare 
sample estimates with true values for model parameters. The RMSE iσ  for a parameter is the 
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square root of the average of the square of the difference between the sample estimate and the 
model true value over the replications in a sample size class: 
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where 
 
 i represents a specific category; 
 k is the kth replicate in a size class; 
 K is number of replicates in a sample class (10 in this study); 
 ki ,δ  is sample estimate of category i from the kth replicate; 

 truei,δ  is the true model value for category i. 

 
Because of the sample size effect on parameter estimation, the RMSEs will vary between 
sample sizes, and the magnitudes will reflect the degree of the departure of the sample 
estimates from the model true values. Evaluating what is an acceptable level of error is to some 
extent subjective and should be weighed against practical considerations; however, if the error 
due to sampling is comparable to the model standard error then the sampling effect is not 
substantial.  
 
Investigating the Sample Size Effect on Test Equating Using Common Items 

To study the sample size effect on test equating using common items, which is one of the most 
widely used test equating methods, another index, the root mean square error of equating 
(RMSEofEq) Eqσ , is used for the linking/common items: 
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In Equation (3), Ne is the total number of categories of the link items between two tests to be 
equated, and j is the jth link category of the link items. When the equating method between two 
tests suggested by Wright and Stone (1979) is used, Eqσ  will provide a measure for the errors 

associated with the equating constant introduced by sampling in equating using common items. 
 
 

RESULTS 
Model Parameter Estimation 

As an example of the variation of sample parameter estimation, Figure 1 depicts the 
relationships between sample category estimates and true parameter values for samples with 
different sizes (the estimated values were derived using the first sample from each size class). 
The straight line in Figure 1 is the identity line (y=x). Figure 1 indicates that as sample size 
increases, the linear relationship between sample estimates and model true values becomes 
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stronger. When the sample size is 150, the differences between sample estimates and model 
true values vary from -1.08 logits to 0.81 logits. When the sample size is 300, the differences 
vary between -1.03 logits to 1.22 logits. When the sample size increases to 1000, the 
differences vary from -0.39 logits to 0.37 logits. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 The relationships between sample parameter estimates and true model parameter 
values. 

 
 
Although to some degree the differences between sample estimated values and the true values 
reflect the sample size effect on model parameter estimation, it is the variation of the differences 
between the replicates for a specific sample size class that is more useful, as one will not be 
able to obtain replicates in practical operations. The root mean square errors (RMSEs) reflect 
the variation of sample parameter estimates within replications for a specific size class. Figure 2 
illustrates the distributions of the RMSEs for category measures for the different sample size 
classes (see Equation (2)). As is clear from Figure 2, the RMSEs generally decrease with 
increasing sample size. When the sample size is 150, the RMSEs for some categories are as 
high as 0.90 logits. When sample size increases to 1000, the RMSEs for the majority of the 
categories are within 0.20 logits. 
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Figure 2 The distributions of RMSE for category measures. 
 
 
To look at the impact of sample size on model parameter estimates for items with different 
numbers of categories, the items were further classified into four types, based on the number of 
their categories: items with two categories (1 mark dichotomous items), items with 3 categories 
(2 mark items), items with 4 categories (3 mark items) and items with 6 categories (the 5 mark 
item). There were no items with 5 categories or 4 marks in the test. For each sample size class, 
the RMSEs for category measures in each item type were averaged to produce the category 
mean RMSEs for the item type. Figure 3 depicts the mean RMSE for each item type. This 
represents a crude way to look at the effect of the number of categories in an item on parameter 
estimation. As is clear from Figure 3, the mean category RMSE generally decreases with 
increasing sample size. The mean RMSE for dichotomous items (two category items) is 0.19 
logits when the sample size is 150 and 0.03 logits when the sample size is 4000. The mean 
RMSE for the item with six categories is 0.47 logits when the sample size is 150 and 0.08 logits 
when the sample size is 4000. 
 
Within each sample size class, the mean RMSE for category measures generally increases with 
increasing number of categories in the items, except for the case of sample size of 1000 in 
which the mean RMSE for items with four categories is higher than that for the item with six 
categories. The mean RMSE for category measures for items with three categories is 0.37 
logits, while that for items with five categories is 0.38 logits when the sample size is 300. The 
increase of mean RMSE for category measures with increasing number of categories in items 
for a specific sample size class reflects the fact that higher category items have more model 
parameters than lower category items and that a test taker will only respond to one of the 
categories of an item regardless the number of categories of the item. As a results, higher 
category items receive fewer responses for a specific category than lower category items. The 
score distribution between categories for an item will also affect the parameter estimation. The 
differences in RMSEs between different item types also decrease with increasing sample size. 
When the sample size is 4000, the category RMSEs for all item types are within 0.10 logits. 
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Figure 3 The distributions of the mean RMSE for category measures of individual item type. 
 
 
Figure 4 shows the distribution of the measurement errors of the category step difficulties 
exported from WINSTEPS. The errors of measurement exported from an IRT analysis tool 
normally represent model standard error (see Wright, 1995), which decrease with increasing 
sample size. When the sample size is 150, the mean errors of measurement for category 
measures vary from 0.17 logits to 0.50 logits. When sample size increases to 500, the mean 
measurement errors vary from 0.09 logits to 0.25 logits. The largest measurement errors are 
associated with the third category measure (with a true model value of 2.47 logits) of a three-
category item. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 The distributions of sample mean model category standard errors. 
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Figure 5 further shows the mean model category measurement errors for specific item types in 
each sample size class. Within each class, the mean errors of measurement increase with 
increasing categories in the items. When the sample size is 150, the mean measurement errors 
are 0.17 logits for items with just two categories, 0.22 logits for items with three categories, 0.22 
logits for items with 4 categories and 0.24 logits for items with 6 categories. As sample sizes 
increase, the differences between the mean category measurement errors within the same 
sample size class decrease. When sample size reaches 2000, the mean measurement errors 
for all items are lower than 0.06 logits.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 The distributions of category mean model measurement errors against item types. 
 
The RMSEs discussed above reflect both the sampling effect and the probabilistic nature of the 
Partial Credit Model and may be viewed as the real standard errors of the model parameter 
estimates as suggested by Wright (1995). It is noted that the model standard error for an item 
exported from an IRT analysis software system does not take into account whether the item fits 
the IRT model. Wright (1995) has suggested that misfit items can increase the measurement 
error above the model standard error. To study how both the RMSEs and the model standard 
errors are affected by sample size, Figure 6 further depicts the ratio of RMSEs to the model 
standard errors for the different sample classes. If the data fits the model perfectly, it would be 
expected that the ratios be close to 1. It is clearly from Figure 6 that for the majority of the items, 
the ratios are between 1.00 and 3.00, indicating that the real measurement errors are 
substantially higher than the model standard errors. Figure 7 further illustrates the mean ratios 
of the RMSEs to the model standard errors for specific item types in each sample size class. 
Within each sample size class, the ratios increase with increasing number of categories in the 
items. For dichotomous items, the mean ratios are close to 1.  
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Figure 6 The distributions of the ratio of sample mean model category standard error to RMSE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 The distributions of the ratio of sample mean model category standard error to RMSE 
against item types. 
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Seven items in the test (accounting for 25% of the maximum mark of the test) analysed here are 
common to both the Foundation Tier test and the Higher Tier test. The sample size effect on 
equating can be measured using the root mean square error of equating (RMSEofEq) defined 
by Equation (3). Figure 8 shows the distribution of RMSEofEq against sample size. With seven 
questions (16 marks) common to both tiers, the magnitude of the equating error induced by 
sampling is quite small. This is because, although the RMSEs associated with individual 
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category measures could be large, the variation of the mean of the measures of the link items 
will be reduced by averaging over all link items. When the sample size is 150, the RMSEofEq is 
just over 0.06 logits. When the sample sizes are 300 and 500, the equating error is below 0.04 
logits. When the sample size approaches 2000, the error is just above 0.01 logits.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 The distributions of root mean square error of equating. 
 
 
One way of evaluating the acceptability of the error introduced to true score equating using 
common items is to compare it with measurement errors inherent in the tests. The following 
example, taken from a different equating scenario, demonstrates how this can be done. Using a 
post-test equating design, a group of 250 candidates was recruited to take an anchor test which 
sampled the content of two other tests. These two tests were shorter than that studied above, 
with a maximum mark of 36 and only two polytomous items with a maximum category score of 
4. The purpose of the equating was to link the difficulty of these two tests. In this situation, the 
sample size is given, but the number of linking items can be varied. As the first test had already 
been administered to a large sample (N=20250), it was possible to take ten samples from this 
first administration to calculate the RMSEofEq according to Equation (3). Two scenarios were 
trialled: one in which the linking items were chosen in order from the start of the test and a 
second in which the linking items were chosen to best target the population ability (the mean 
item difficulty was closely matched to mean person ability). Only dichotomous items were 
chosen as link items. Figure 9 shows how the RMSEofEq decreases as the number of linking 
items is increased according to each selection method. Increasing the number of link items in 
each case yields diminishing returns; targeting the items to mean person ability results in a 
lower RMSEofEq than selecting them in sequence order. This is to be expected, as the 
parameters of well-targeted items can be calibrated with greater precision. Figure 10 shows the 
error introduced to true score equating by the shift represented by the RMSEofEq. This shift is 
slight compared to the standard error of raw scores. It would seem in this situation, therefore, 
that even with a low sample size and relatively few link items, the error introduced by equating 
is outweighed by the measurement error inherent in the tests themselves. 
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Figure 9 MSqE of equating according to the number of link items. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: The impact of the MSqE of equating on true score equating. 
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DISCUSSION 
As indicated by the work carried out by Hambleton, Jones and Rogers (1993) and the work by 
Swaminathan et al. (2003), estimation errors of IRT model parameter estimates due to sampling 
can have important implications in analysis of test data and the development of IRT-based 
tests. Efforts should be made to reduce estimation errors to a minimum.  
 
Existing studies on sample size effect on IRT model parameter estimation have primarily 
focused on model parameter recovery using simulations to generate responses data. One of the 
limitations with simulations using model produced responses data is that the data used meet the 
model assumptions. As operational test data normally do not strictly meet the model 
assumptions, results from simulation investigations may not correctly reflect real situations. 
Although there have been studies using operational test data in simulations to investigate the 
sample size effect on IRT model parameter estimation, many used homogeneous item types. 
While this study used heterogeneous item types and operational test data, the results are 
specific to the test used and caution must be exercised in generalising from the findings 
reported here. 
 
Nevertheless, the results obtained from this study demonstrate both the sample size and the 
item type have an important influence on model parameter estimation. The RMSEs for sample 
category measures decrease with increasing sample size. When sample size is fixed, the 
RMSEs generally increase with increasing number of categories in an item. Model parameter 
estimation is also affected by the score distribution between categories of the items. Although 
some researchers have suggested using the ratio of sample size to the number of model 
parameters as a guide to determine sample size (see De Ayala and Sava-Bolesta, 1999; 
DeMars, 2003), the structure of the test also needs to be taken into account. For example, for 
tests comprising homogeneous item types, the ratio of sample size to number of model 
parameters may be used as a good indicator for choosing sample size. In such a case, 
responses will be relatively evenly distributed between all categories. However, when a test is 
composed of heterogeneous item types (i.e. items with varying number of categories), a 
reasonable number of responses to categories of the items with the highest number of 
categories must be ensured in order to maintain the sampling error for all items with acceptable 
level. This study clearly shows that when sample size is fixed, the sampling errors associated 
with category measures for items with high numbers of categories are generally larger than 
those for items with low numbers of categories. It is also worth noting that the sample estimated 
RMSEs for polytomous items can be substantially higher than the model standard errors. 
Further work is needed to study the effect of misfit items on parameter estimation. 
 
The size of samples required to estimate model parameters depends on the distribution of 
scores among categories within items and the degree of sampling errors that can be accepted. 
For the test data used here, when the sample size reaches 1000, the RMSEs for the category 
measures vary from 0.04 to 0.45 with an average of 0.14. When the sample size is 4000, the 
RMSEs vary from 0.02 to 0.13 with an average of 0.06. In this case, if an average of 0.06 for the 
RMSEs is required, then the sample size would need to be 4000. Results from this study also 
show that the equating error depends on both the number of link items and size of the sample 
used to derive parameter estimates. The test studied here had a maximum score of 64, and the 
link items account for 25% of the maximum mark. A sample of the size of 300 in this case would 
produce equating errors below 0.04 logits. Whether this level of error is acceptable is largely a 
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subjective decision; however, the final example shows that such equating errors can be 
negligible compared to the model standard errors of estimates of true scores. 
 

Qingping He and Chris Wheadon 
Research and Policy Analysis Department 

AQA 
December 2008 

 
 

  
 

 
 

REFERENCES 
Andrich, D. (1978) A rating formulation for ordered response categories. Psychometrika 43, 

561-573. 

Bock, R. (1972) Estimating item parameters and latent ability when responses are scored in two 
or more nominal categories. Psychometrika 37, 29-51. 

Chuah, S., Drasgow, F. and Luecht, R. (2006) How big is big enough: Sample size 
requirements for CAST item parameter estimation. Applied Measurement in Education 19, 
241-255. 

De Ayala, R. and Sava-Bolesta, M. (1999) Item parameter recovery for the Nominal Response 
Model. Applied Psychological Measurement 23, 3-19. 

DeMars, C. (2003) Sample size and the recovery of Nominal Response Model item parameters. 
Applied Psychological Measurement 27, 275-288. 

He, Q. and Wheadon, C. (2008) Using the Rasch model to analyse dichotomous and 
polytomous items. AQA Internal Report, RPA_08_QH_RP_017. 

Hambleton, R., Jones, R and Rogers, H. (1993) Influence of item parameter estimation errors in 
test development. Journal of Educational Measurement 30, 143-155. 

Linacre, J. M. (2006) WINSTEPS Rasch measurement computer program. Chicago: 
Winsteps.com 

Masters, G. (1982) A Rasch model for partial credit scoring. Psychometrika 47, 149-174. 

Masters, G. (1984). Constructing an item bank using partial scoring. Journal of Educational 
Measurement, 21, 19-31. 

Masters, G. (1999). Partial credit model. In Advances in measurement in educational research 
and assessment (Ed. by G. Masters and J. Keeves), 98-109. The Netherlands: Elsevier 
Science. 

Masters, G. and Evans, J. (1986) Banking non-dichotomously scored items. Applied 
Psychological Measurement 10, 355-367. 

Rasch, G. (1960) Rasch G. (1960). Probabilistic Models for Some Intelligence and Attainment 
Tests. Denmark Paedagogiske Institute, Copenhagen, Denmark. 

Smith, A., Rush, R., Fallowfield, L., Velikova, G. and Sharpe, M. (2008) Rasch fit statistics and 
sample size considerations for polytomous data. BMC Medical Research Methodology 
8:33. 

Stone, M. (2002) Knox’s cube test – revised (KCT-R). Wood Dale, IL: Stoelting. 

The effect of sample size on item parameter estimation for 
the partial credit model

Qingping He & Christopher Wheadon



Centre for Education Research and Policy 
 

 
 
 

 

 

16

Stone, M. and Yumoto, F. (2004) The effect of sample size for estimating Rasch/IRT paramters 
with dichotomous items. Journal of Applied Measurement 5, 48-61. 

Swaminathan, H., Hambleton, R., Sireci, S., Xing, D. and Rizavi, S. (2003) Small sample 
estimation in dichotomous item response models: effect of prios based on judgemental 
information on the accuracy of item parameter estimates. Applied Psychological 
Measurement 27, 27-51. 

Wang, W. and Chen, C. (2005) Item parameter recovery, standard error estimates, and fit 
statistics of the Winsteps program for the family of Rasch models. Educational and 
Psychological Measurement 65, 376-404. 

Wheadon, C. and Whitehouse, C. (2006) GCSE Science multiple-choice tests new specification 
(4460) First award: November 2006 Technical report 

Wright, B.D. (1995) Which standard error? Rasch Measurement Transactions 9, p 436. 
Wright, B.D. and Master, G (1982) Rating scale analysis. Rasch Measurement. Chicago, IL: 

MESA Press. 

Wright, B.D. and Stone, M.H. (1979) Best Test Design. Rasch Measurement. Chicago, IL: 
MESA Press. 

 

 

The effect of sample size on item parameter estimation for 
the partial credit model

Qingping He & Christopher Wheadon




