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Abstract

The number of candidates for whom mark data is available at the time of an award is less than
the total entry in the vast majority of cases — the relative difference between these is referred to
as the Percentage Fully Processed (PFP). At some point between award and publication of results,
the mark data for the additional candidates will become available and will have some effect on the
percentage outcomes at each grade — the outcomes will drift, known as Post-Awarding Drift (PAD).
This effect has been the focus of previous studies, where empirical and simulation analyses were
undertaken. These studies found some relationship between the PFP and PAD, which further re-
sulted in a recommendation of lowering the minimally required PFP (MRPFP) at award from 85%
to 70% across all specifications in order to avoid PAD (although 75% was ultimately chosen). The
aim of this study is to investigate PAD from an analytical perspective in order that this MRPFP might
be chosen in a more substantiated way. The results show that the PAD as observed empirically or
by simulation can be analytically explained, at the expense of making some practical assumptions,
and that the MRPFP will vary from unit to unit. This is mainly driven by the size of the total entry so
that in the extreme cases of very large-entry units (e.g. total entry of 400,000) the MRPFP is less
than 1%. Additionally, the methodology was explored during the summer 2012 awarding series with
the primary aim of facilitating decisions being made about units with low PFPs. Discussion is also
provided around the use of additional information that is available during award preparation that can
better inform the decisions made around the MRPFP. F

Introduction

At the time of an award, not all candidates’ marks will be available. Some marks are late as the
scripts are still awaiting marking whilst other marks may be unavailable due to the candidate hav-
ing been absent. The percentage of marks that is available at award is known as the ‘Percentage
Fully Processed’ (PFP). The distributions provided at an award are therefore an incomplete repre-
sentation of the full cohort’s performance. The aim of an award meeting is to set grade boundaries
for each judgemental grade1 in light of the judgemental and statistical evidence such that standards
remain comparable across series and awarding bodies. Before an award, unit-level ‘Statistically
Recommended Boundaries’ (SRBs) are derived from a statistical prediction. At the award meeting,
recommended boundaries are chosen with an appreciation of how closely the outcome adheres to
this prediction. Problems can arise when the distributions from which the boundaries were chosen
are significantly different to those where all marks have been accounted for — the Fully Processed
(FP) distribution — as this may result in a change in outcomes that may have affected the choice of
grade boundaries. At the time of publication of results, there may therefore be a drift in the outcome
at a judgemental grade boundary compared to at award. This is termed ‘Post-Awarding Drift’ (PAD)

1A judgemental grade boundary is one for which examiners scrutinise candidates’ work at award meetings, for example A,
C and F at GCSE. Other boundaries are calculated once these judgemental ones have been determined.
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— the difference between outcome at award and outcome at provisional results publication2. Due
to the importance of the statistical evidence in supporting examiners’ judgements, the guidance it
provides should be as reliable as possible and hence it is desirable to have an appreciation of the
PAD resulting from partially available data.

F
Due to technological advances, the marking for many units is now performed on-line and captured
electronically via Computer Marking from Images (CMI+). This system allows examiners to mark
random electronically-captured items from candidates’ scripts. This has the potential to reduce the
impact of severity or leniency on any individual or centre as demonstrated by an individual marker
since the distributed item marking will act to cancel any such overall tendency (Pinot de Moira, 2011).
This also means that the marks for all papers marked in this way have greater potential to arrive ran-
domly making a study of PAD easier because the systematic restriction of examiners marking by
centre does not ostensibly exist. The actuality of realising this random allocation of items to mark-
ers is discussed later. Furthermore, more awards are now moving towards OnLine Awarding (OLA),
which is a method of awarding that can only be used by utilising CMI+. OLA is intended to be more
flexible than the traditional face-to-face meetings because awarding committee members are able to
scrutinise candidates’ scripts during a longer time frame of several days and at their convenience.
However, on the other hand, current OLA procedures require a much shorter time frame in which to
derive SRBs — potentially as short as only several hours. This is because the SRBs usually need to
be uploaded on the same day that the distributions become available, which is two days before script
scrutiny starts. OLA was piloted and trialled in several A-level subjects in June 2011 and January
2012 and rolled out to more subjects, including selected GCSEs, in June 2012. The preparation
window is restricted by the current procedure, which currently means that distributions can only be
provided for award once a Minimally Required PFP threshold (MRPFP) is reached — currently 75%
of candidates’ marks being available. Therefore, if this MRPFP could be justifiably reduced then this
would not only provide a general opportunity to run awarding data for CMI+ units sooner but also to
widen the window for the derivation of SRBs.

This issue has been the focus of a few previous studies. Up until 1998, the definition of the MRPFP
had been 75%. As part of a study on the use of reference statistics used in awards (Baird, 1999), it
was found that the PFP had the largest impact on distributions of all the events occurring between
award and results publication. Examples of other events are: late examiner adjustments, re-marks,
marking review and changes to coursework moderation strategies. Thirty six A-levels and thirty GC-
SEs from summer 1999 offered by AQA’s predecessors (AEB, NEAB, SEG) were included in this
study, all of whose PFPs were greater than 70% at award. The results of this paper suggested that
the PFP did not predict the changes in outcomes between award and results publication for any
judgemental grade boundary. However, it was found that if the PFP is low in a particular year, then
the PAD itself would differ from that of the previous year. Following this study, but not as a conse-
quence of it, the definition of the MRPFP was increased to 85% in 1999.

In a 2000 report (Baird et al., 2000) it was noted that the summer 1999 results statistics suggested
that the new 85% threshold had had a positive impact on controlling differences in distributions from
year to year. However, in many subjects this percentage had been difficult to achieve in time which
consequently resulted in narrow windows for awarding meeting preparation. All summer 1999 A-
levels and GCSEs were investigated for PAD as measured by change in percentage outcome be-
tween award and provisional results. It was found that between 75% and 88% of subjects resulted
in no significant PAD as defined by the guidance limits at the time. Between 3% and 8% had PAD
resulting in a move from within statistical guidance limits at award to without these limits at provisional

2To assist in managing the risk introduced by such an effect, CERP implements a Pre-Results Checking Procedure seek-
ing to identify any instances where PAD may have compromised the outcomes potentially suggesting that a change to grade
boundary position(s) may be appropriate. For details of this, see the AQA internal document ’Pre-Results Checking Proce-
dures’.
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results. Between 1% and 3% had PAD resulting in the opposite — a move from without guidance to
within guidance.

Later in 2004, empirical and simulated PAD were investigated, measured by changes in percent-
age outcome (Dhillon et al., 2004). The empirical findings for thirty eight A-level and GCSE subjects
in summer 2003 found that there was no significant relationship between PAD and PFP. Even though
in the extreme case only 45% of candidates had been FP at award, it is noted that the 85% MRPFP
of 2003 had artificially restricted the data used which may have led to this non-significant result. The
majority of subjects had a PAD of less than 1% although it was clear that factors other than PFP for
some subjects had contributed to the observed changes, with marking review having the next largest
contribution.

The simulated findings of the 2004 study for thirteen A-level and GCSE subjects were produced
by excluding various proportions of centres from the complete FP summer 2003 distributions. This
was done either contiguously or randomly, depending on whether the mark data was originally al-
located geographically or randomly, respectively. For each judgemental grade boundary and each
PFP, many thousands of samples were taken from the full dataset. The mean of the cumulative per-
centage outcomes at the grade boundary, along with a 99% confidence interval, was compared to
the outcome on the final FP distribution. Unlike the empirical findings, there was found to be a highly
significant relationship between PAD and PFP in the form of an asymptotic relationship as illustrated
by the example curve in Fig. 1. This significant result was likely to have been a consequence of
being able to simulate all PFP values unlike with the empirical data. In all cases, it was found that
in order to achieve a PAD no greater than 1%, the MRPFP was always less than 67%. Moreover,
in extreme subjects the MRPFP was as small as 2% in order to achieve a PAD of no greater than
1%. There was therefore considerable variation across subjects although the simulations demon-
strated a surprising level of stability as measured by PAD. The results of this study suggested that
the MRPFP of 85% in 2003 was overly conservative. As a consequence of this work, the authors rec-
ommended 70% as the new MRPFP and ultimately 75% was chosen which is the value in use today.

Another motivation for this research was the lack of a rigorously substantiated PFP threshold. The
simulations discussed above required the knowledge of the complete FP distribution, whereas in re-
ality only a smaller sample is available at the time of an award. This raised the question of whether
anything useful could be inferred about the full distribution from the sample distribution. Since the
investigation of 2004 (Dhillon et al., 2004), there has been the introduction of CMI+, which, as men-
tioned earlier, means that the systematic restriction of examiners marking by centre does not os-
tensibly exist. However, even though this random allocation of items is not always present, which
is discussed later, this investigatiion does provide a framework which can potentially be built upon
to address such subtleties. Additionally, it has to be considered whether the investigation of PAD
at subject level is possible. When a specification is linear, as most were in 2004, the subject mark
distribution is known before any grade boundaries have been determined. When a specification is
modular, as most are now, the unit marks for candidates can come from several different exam series
which makes the subject mark distribution more complex as it is dependent on the grade boundaries
and the conversion to the uniform mark scale (UMS)3. In either case, given that an investigation of
PAD on a single unit is complex in itself, at this stage it makes more sense to consider just the PAD
as defined on individual units rather than at the subject level. Even if controlling the subject level
outcome is the focus of the award, minimising the PAD on the units is likely to also minimise the PAD
on the subject also. For example, it might be intuitively expected that the contribution of the unit level
PAD from one unit of an n-unit specification to the subject level PAD is proportional to 1/n. Although
this is clearly an over simplification, this may potentially be more applicable to the subject level mark

3For details of the UMS scheme, see the AQA booklet (2011).
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Figure 1: Example from (Dhillon et al., 2004) of randomly simulated PAD for English Literature A from
2003 with a total entry of 162,405.

distributions of future linear specifications, although in this instance there may be the opportunity to
evaluate PAD on the subject level mark distribution itself.

In this paper, an analytical representation of PAD at the unit level is described. To facilitate this
representation, the FP unit level marks are assumed to be modeled by a normal distribution with
mean µ and variance σ2. A method based on the use of simultaneous confidence bands (Cheng
and Isles, 1983) is used to estimate this FP cumulative mark distribution given a sample distribution
with PFP = f%, mean x̄ and standard deviation (SD) s. This theoretical background is explained
in the next section. The method requires a total entry (the population), the PFP on distribution at
award (the sample), the sample mean and sample SD and a chosen level of confidence (say 90%).
The magnitude of PAD is defined as the difference between the grade boundary mark at award and
the mark at results publication, which is allowed to be continuous. The method results in analytically
being able to determine the MRPFP such that a statistically defined grade boundary mark would not
change upon provisional results, with a certain confidence. An extension of this approach is dis-
cussed to illustrate the impact that additional information, which becomes available when the sample
distribution is produced in the lead up to an award, may have on the confidence with which one may
have in grade boundary marks that are determined from incomplete data. This may be useful when
considering whether it is appropriate to proceed with awarding preparation when the PFP is less than
the identified MRPFP. The intention of this work is to outline an analytical framework by which it is
possible to clearly identify the impact of different factors on potential PAD. Applications of this current
model and possible extensions to it are also discussed.

FP candidates: an analytical solution to the PAD problem 4 Robert Hales
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F
Theoretical background

A unit has a total entry which is also called here the population size N . The mean mark of the
total entry is µ and the variance is σ2 and these will be unknown at the time of an award. These two
parameters form the model parameter set θ = (µ, σ2). The method of evaluating the potential extent
of PAD consists of three stages:

1. construct a Confidence Region (CR) within which the model parameter set θ is likely to fall
based on a sample’s distribution and total entry

2. construct a Confidence Band (CB) around the sample cumulative percentage mark distribution
within which the cumulative percentage mark distribution is likely to falll, where both distributions
are represented as continuous probability density functions (CDFs)

3. for a chosen cumulative percentage, construct a plot of PFP versus potential boundary mark
change due to PAD to inform the MRPFP.

The detailed derivations for these are presented in Appendices A, B and C, respectively, but a more
general overview of them is presented below.

The Confidence Region (CR)

The CR, as computed in a similar way to the procedure set out in a previous study (Arnold and
Shavelle, 1998), is a region in the parameter space θ where the population mean and SD are likely
to belong with confidence γ, which is guaranteed by the underlying construction. This is dependent
on the mean and SD of the sample, the total size of the population, the PFP and the specified level
of confidence. As shown in Fig. 2, it has the shape of a horizontal slice of a (positive) parabola sur-
rounding the sample mean x̄ and sample variance s2. With decreasing sample variance, increasing
population size or increasing PFP, the region becomes asymptotically rectangular as the area de-
creases. In Fig. 2 the CR and its bounding curves are shown for total entry N = 200, PFP f = 0.7,
sample mean x̄ = 40 and sample SD4 s = 16 with confidence 100(1− γ) = 90%. This value of entry
size is unlikely to be of interest because, for such small units, the PFP usually nears 100% at award.
Furthermore, for such entry sizes the theory begins to break down due to the assumptions made
within it. However, it is shown here because for smaller sample sizes the shape of the CR is more
apparent.

F
The Confidence Band (CB)

The marks available at time of sampling are formed into the sample cumulative mark distribution.
These are used when deriving ’Statistically Equivalent Boundaries’ (SEBs) for unit level boundaries
when preparing for an award. Through simple scaling, this distribution forms the sample CDF, F (x).
The CB, which is directly computed from the CR, is a region bounded between two ‘S’-shaped curves
which totally enclose the sample CDF F (x)5. It is the band in which the population CDF is likely to lie
with confidence γ. An example directly corresponding to the CR in Fig. 2 is shown in Fig. 3. Horizon-
tally, it is thinner at the sample mean x̄ and wider at the extremes of the mark range. With decreasing
sample variance, increasing population size or increasing PFP the band more tightly wraps the sam-
ple CDF. This directly corresponds to the behaviour of the CR in these limits. It should be noted that

4The values of SD, rather than the variance, are given throughout because the SD is the usual measure of scale used in
awarding procedures.

5It should be noted that the cumulative mark distributions generally used in the industry quote percentages of candidates
achieving a given mark or higher. For coherence with the founding mathematical theory on which the approaches applied here
are based, the conventional definition of percentiles is applied — the percentage of candidates achieving below a given mark.
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Figure 2: The Confidence Region (shaded) in (µ, σ2) space for N = 200, f = 0.7, x̄ = 40, s = 16 and
confidence 100(1 − γ) = 90%. Left: The region is bounded by three curves: a quadratic curve and
two horizontal lines. Right: The CR zoomed in.
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Figure 3: The confidence band forN = 200, f = 0.7, x̄ = 40, s = 16 and confidence 100(1−γ) = 90%.
The band is the region between the two curves Fmin and Fmax.
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the width of the CB around the sample CDF is slightly asymmetric (F (x) − Fmin 6= Fmax − F (x)) .
This asymmetry is minimal and its presence is considered below. It should also be noted that the
joint confidence level γ does not give a probability that the total entry CDF will lie in this band. The
parameter set θ is fixed but the confidence region from which the band was generated is random as
it depends upon the (random) sample. However, it does give a frequentist result stating that, should
a sample of equal size be taken many times, then in 100(1− γ)% of the samples the total entry CDF
would lie in the confidence band.

The Post-Awarding Drift

Prior to an award, the percentage of candidates expected to obtain a particular grade may be known
via a prediction for that grade or some other statistical reference. The chosen mark for that grade
boundary is determined from the sample CDF at the time of an award. From the CB located around
this sample CDF, a plot can be produced of the maximum possible deviation (up to the confidence
level) from this chosen mark, for a range of PFP values. This variation in mark is used as a measure
of potential PAD in boundary mark.

At a particular value p in the CDF percentile range, PAD ∆p(f) is defined as the difference be-
tween the corresponding marks on the sample CDF F and one of the CB boundaries, Fmin or Fmax.
In the appendix, this is derived as

∆p(f) = Ψ−1(p)σ + σ+(f,N)

(
z(α1)cµ(f,N)√

fN
−Ψ−1(p)

)
, (1)

where Ψ−1(·) is the inverse CDF of the standard normal distribution, z(α) is an upper percentile of
the standard normal distribution, σ+(f,N) is the lower horizontal boundary of the CR and cµ is a
finite population correction factor — these terms and their relevance are explained in the appendix.
An example of the estimates of potential PAD is shown in Fig. 4, using the same parameters as
the CR and CB shown in Figs. 2 and 3, respectively, except for N = 2000. The use of the small
population size (N = 200) in the earlier part of this section was for illustrative purposes only. This is
not appropriate here due to the instability of the PAD plot as N approaches 100.

The PAD curves for p ∈ (0, 0.5] lie almost coincident with the the PAD curves for p ∈ [0.5, 1). Fig.
4 shows the PAD across the percentile range from p = 0.01 to p = 0.5. This (somewhat arbitrary)
choice of percentile range has a negligible effect on the PAD plot because the asymmetry directly
arises from the asymmetrical shape of the CR and, therefore, asymmetry in the CB described above,
which will tend to a small rectangle (and hence symmetry) as n or N increases.

The plot shows that in the limit of the sample size going to the total entry (f → 1), the PAD goes
to zero across the whole CDF, as would be expected since all the marks are known. For decreasing
f → 0, the figure shows that the PAD increases, but also that it increases more in the tails of the CDF
as p → 0 . It might be intuitively expected that the PAD would be more stable in at least one of the
tails because 100% of candidates would always be expected to gain a mark of 0 or higher regardless
of the PFP. The apparent discrepancy results from a continuous mark scale modeling a discrete one.
However, in the other tail the instability is to always be expected because it is the unknown population
variance that determines the number of candidates achieving the maximum mark. The behaviour of
PAD as f → 0 is ∆p(f) ∼ 1/

√
f — inverse square root behaviour. This appears to explain the asymp-

totic behaviour observed (Fig. 1) in the simulated findings of the previous investigation (Dhillon et al.,
2004). Although the y-axis in Fig. 1 measures PAD by percentile and the y-axis in Fig. 4 measures
PAD by quantile, these are related and amount to the same concept.

The model described works with a continuous mark scale. Clearly, in practice, these mark scales

FP candidates: an analytical solution to the PAD problem 7 Robert Hales
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Figure 4: The PAD for N = 2000, x̄ = 40, s = 16, γ = 0.1, p ∈ (0, 0.5). As p increases from 0 to 0.5,
the PAD decreases in magnitude. As p increases from 0.5 to 1, the PAD would increase again almost
retracing the curves for p ∈ (0, 0.5).

use discrete whole number marks. When using statistical guidance to establish the position of a
unit level SEB, the selected integer mark is the one that has the percentage outcome that is closest
to the statistical recommendation. This is equivalent to linearly interpolating between two consecu-
tive marks exactly to achieve a prediction/reference and then rounding the resulting decimal valued
mark to the nearest mark. Therefore, in the general continuous sense, it is initially assumed that
the maximum possible deviation in mark x due to PAD, that would not have resulted in a different
SEB being selected, is half a mark. A deviation greater than the deviation criterium δx = 0.5 at a
particular PFP value indicates a greater likelihood of a mark change due to PAD and hence that the
chosen mark is more likely to change once all marks have been processed (f = 100%). Fig. 4 shows
that the intersections of the individual p-curves with the line ∆p(f) = 1/2 varies. Hence the MRPFP
suggesting stability of the mark varies across the grade range since it varies with p. In Fig. 5 the
same plot is produced for a single value of p = 0.5. This shows that should a grade boundary have
a prediction or reference outcome of 50%, then the MRPFP needed in order that the (continuously
defined) boundary will, with 90% confidence, not drift by more than ±0.5 marks post-award is the
intersection point fmin = 67%.

When the potential PAD at one grade boundary, say grade A, is of interest the PAD and MRPFP
can be evaluated for the percentile corresponding to the prediction for that grade, p = pA. Due to
the variation in potential PAD across the percentiles, in practice it would be necessary to select a
single threshold percentile p = pthresh on which to evaluate an MRPFP. Ideally, this value would be
chosen such that the potential PAD is maximised, therefore, providing a slightly conservative value of
MRPFP for most grade boundaries. The point at which this occurs is where the difference between
the sample CDF and the confidence band is greatest in terms of difference in mark (i.e. horizontally in
Figure 3). However, in the limits as p→ 1 and p→ 0, the asymptotic nature of the relationship tends

FP candidates: an analytical solution to the PAD problem 8 Robert Hales
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Figure 5: The PAD for N = 2000, x̄ = 40, s = 16, γ = 0.1, p = 0.5. This is one of the curves in Fig. 4.

to infinity6. The threshold percentile 0 < pthresh < 0.5 should be chosen such that all the percentiles
of interest (that is, the percentiles that correspond to all the grade boundary outcomes of interest) fall
between pthresh and 1−pthresh. Since the potential PAD in Fig. 4 is monotonically increasing in the tails
of the distribution, this means that the estimation of the MRPFP is maximised at pthresh and 1−pthresh.
Furthermore, the threshold removes issues with the unstable behaviour in the tails of the distribution,
i.e. when sampling, it removes the unrepresentative effect of small numbers of candidates at the
extremes of the mark range. Incidentally, for pthresh = 0.5, used for demonstration purposes above,
the value of the corresponding MRPFP is at its lowest across the range of p. Practically, therefore, it
is important to evaluate the MRPFP between the limits defined by pthresh.

Due to this approach acting on a continuous mark distribution is it not sensitive to the proximity
of the predicted/reference outcome relative to outcome at the SEB. This information becomes avail-
able when preparing for an award once the specifics of the sample CDF are known and is potentially
of great interest when evaluating the likelihood of the SEB moving due to PAD. However, when mak-
ing general decisions about the MRPFP for a unit without this level of detail, the assumptions made
above are necessary and provide sufficient approximation. This theory will later be used to create
many sample distributions of a known total entry population. Each one of these samples represents a
potential awarding sample. For the population and each sample, the continuous version of the mark
for a predicted/reference outcome, as calculated by linear interpolation, should be determined. The
distribution of these sample marks would indicate that in 100(1− γ)% of cases the mark is no further
than 1/2 from the population SEB. However, because the SEB is actually an integer, the position of
the (continuous) SEB from the awarding sample should be considered with respect to integer marks.
If the population SEB is near to an integer mark, then the δx = 1/2 deviation criterium set in the the-
ory accurately models the likelihood of an SEB moving due to PAD. However, if the population SEB
is close to a half-integer mark, then the δx = 1/2 deviation criterium is less robust because there is

6Fig. 4 should technically show the PAD for all values of p ∈ [0, 1]. The reason this cannot, and should not, be done is
because it is meaningless to measure the PAD at such extreme percentiles, where also the numerical procedure would break
down. In the limits of p → 0 or p → 1 the PAD is a vertical line at f = 1, indicating that no matter what is done, (1 − γ)%
confidence can only be achieved when 100% of marks are processed. This is tautological because with 100% FP marks there
would always be 100% confidence. The apparent inconsistency is actually due to the fact that a continuous mark scale model
is being used to model a discrete one.

FP candidates: an analytical solution to the PAD problem 9 Robert Hales
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essentially a 50% chance that the SEB will be rounded to the neighbouring integer due to PAD. With
this information, reflection should be made on whether the potential PAD may impact on the position
of an SEB as this would then affect the preparation for an award.

Results

Analytical results

By way of demonstration, the method was applied to several simulated units. The only variable
changed was size of total entry N as this is the variable that changes most from unit to unit across
specifications. The fixed variables were the PFP, sample mean and SD and confidence for the CRs
and CBs and the sample mean and SD, confidence and percentile for the PAD plots. Figure 6 shows
the CRs for several values of N from 200 to 200,000. This covers everything from the smallest units
that use statistical guidance (e.g any of the GCSE Panjabi units) to the largest units, in particular the
GCSE English Unit 1 tiers ENG1F and ENG1H. It can be seen that the CR shrinks and becomes
more rectangular with increasing N . The corresponding CBs for the same values of N are shown
in Figure 7, which shows how the bands shrink accordingly around the sample CDF indicating that
the FP CDF is increasingly likely to be contained near the sample CDF with increasing N . Finally,
the corresponding PAD plots, again for the same values of N , are shown in Figure 8 for pthresh = 0.57

and all values of the PFP. The intersection of these curves with the line ∆p(f) = 1/2 then gives the
key value fmin — the MRPFP needed in order that with 100(1 − γ)% = 90% confidence the mark
corresponding to the 50% percentile on the FP CDF will not deviate by more than half a mark from
the same mark on the sample CDF. The plots show that fmin decreases with increasing N .

Equation (1) can be used to analytically calculate the values of fmin for various scenarios which
can then be tested by simulation here, by way of a validation. Simulations were performed for µ = 40,
σ = 16 and pthresh = 0.01, 0.1, 0.5 with confidence 100(1 − γ) = 90%. The value of pthresh = 0.1 was
chosen low enough such that it would encompass, for example, the judgemental grades of A and E
of a typical A-level unit, but also not so low as to be too close to the maximum resolution of p, which is
related to the standard deviation in a Poisson process: 1/

√
N (for N = 200, the maximum resolution

is 1/
√

200 = 0.07). Population sizes ranging from N = 1, 000 to N = 400, 000 were considered. A plot
of the corresponding fmin values is shown in Fig. 9. This confirms that the dependence of fmin on N
is exponential as N → ∞. Also shown in Fig. 9 are the corresponding sample size n = Nfmin. This
indicates that for the value of pthresh = 0.1, there is a sample size of n ≈ 12, 000 beyond which little
more information can be gained. As p decreases, this limiting value of the sample size increases so
that it is n ≈ 25, 000 for pthresh = 0.01. The values of pthresh = 0.01, 0.5 were chosen to show how fmin is
affected by pthresh. These show that a very small choice of pthresh increases fmin but not excessively so
— for N = 400, 000 for example, fmin only doubles from 3% to 6% when pthresh is reduced by a factor
of 10 from 0.1 to 0.01. For pthresh = 0.1, and for each value of N , 10,000 simulations were performed
and the number of simulations for which the PAD was no greater than ∆ = 1/2 was between 92% and
97%. These values clearly exceed the chosen 90% confidence value, but this can be attributed to the
conservativeness of the CRs. They are likely to be conservative given that no optimisation of these
regions has been considered. Therefore, the resulting CBs are likely to be wider than necessary and
hence the derived values of the MRPFP are also likely to be generous.

7The choice of pthresh = 0.5 here is arbitrary and only for purposes of demonstration.
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Figure 6: The confidence regions for N = 200, 2000, 20000, 200000 (a to d), f = 0.7, x̄ = 40, s = 16,
γ = 0.1. The quadratic curves, which appear as straight lines on three of the plots, are used to
calculated the CBs, for p = 0.1 in this case (see Appendix).
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Figure 7: The confidence bands for N = 200, 2000, 20000, 200000 (a to d), f = 0.7, x̄ = 40, s = 16,
γ = 0.1.
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Figure 8: The PAD for N = 200, 2000, 20000, 200000 (a to d), x̄ = 40, s = 16, γ = 0.1, p = 0.5.
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Figure 9: Left: The MRPFP values for the populations used in the simulation testing for pthresh = 0.5

(∆), pthresh = 0.1 (◦) and pthresh = 0.01 (+). Right: The corresponding sample sizes n for the same
pthresh-values.

F
Empirical results

The theory was applied to actual exam data for three units. A small unit, a large unit and a unit
that was rerun after award were considered. Additionally, the method was explored during the sum-
mer 2012 awarding series for several units where a problem was foreseen. These are discussed in
the following subsections. It should be noted that, here, the assumption is that it does not matter
exactly where a particular percentile sits between whole number marks. As a continuous distribution
is being used to model a discrete one, all that is important is the percentile value itself. In all of the
below, the empirical sample distributions are tested for whether they deviate by more than 1/2 a mark
from the population distribution. These are not then ‘snapped’ to the nearest whole mark because
that is not how the theory was, or could be, defined. A further analysis is then conduced where
this assumption is not made and the sample distribution of continuous marks and where it lies with
respect to the integer marks is considered.

A small unit

Unit 1 of A-level Philosophy (PHIL1) in summer 2010, with a maximum mark of 90, had a total entry
of N = 5, 657 with a FP mean of µ = 40.20 and a FP SD of σ = 15.57. The award was run with the
PFP at just under 100%, but the idea here is to illustrate how the award could theoretically have been
run at a lower PFP. The A grade boundary prediction for this unit was 16.15%, corresponding to a
mark of 55. This translates to a mark of xA = 54.94 on the continuous mark scale for the population.
Following through the theory based on these figures gives the plot shown in Fig. 10. This shows the
the MRPFP is fmin = 57%. This indicates that if many different samples of size n = 3, 224 of the
PHIL1 total entry were taken, then the FP CDF would lie totally within in the sample CB on 90% of
occasions. This is equivalent to saying that on 90% of occasions the PAD from xA would differ by no
more than 1/2. A simulation was run for 100,000 samples of this size and in 94,447 cases (94.5%)
the A boundary would not have drifted by more than half a mark from xA.

In addition, an evaluation of the location of the distribution of continuous marks with respect the
integer mark scale was made. For the above samples, the distribution of the continuous marks for
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the xA percentile p = 0.16158, is also presented in Fig. 10. This shows that 92.4% of the marks lie in
the range [54.5, 55.5], indicating that it is still very unlikely that the SEB would have changed from 55
as a result of PAD. This is due to the proximity of xA to the whole integer mark.

∆ p
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f 
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x (mark) 

Figure 10: Left: The PAD for the grade A prediction on PHIL1 in June 2010. The intersection with
the line ∆P (f) = 1/2 is at fmin = 0.57 (100(1− γ) = 90%, p = 0.165). Right: The sample continuous
mark distribution for 100,000 samples of size 57% of the total entry of PHIL1 at grade A (p = 0.165).

F
A large unit

The coursework component 3702/CS of legacy GCSE English A was one of the biggest compo-
nents/units provided by AQA. It had a maximum mark of 54 and a total entry of N = 377, 800 in
summer 2011 (this component has now been replaced by unit ENG02, with a similar total entry for
summer 2012). The FP mean was µ = 37.86 and the FP SD was σ = 8.26. This component was
split across two tiers of entry, but the marks were combined for the purposes of this analysis. The
combined C grade outcome was 87.2%, corresponding to a mark of xC = 29.74 on the combined con-
tinuous mark scale for the population (which would have been rounded to 30 had this been an SEB).
Following through the theory based on these figures gives the plot shown in Fig. 11. This shows that
the MRPFP is fmin = 0.93%. This indicates that if many different samples of size n = 3, 514 of the
3702/CS total entry were taken, then the FP CDF would lie totally within in the sample CB on 90% of
occasions. This is equivalent to saying that on 90% of occasions the PAD from xC would differ by no
more than 1/2. A simulation was run for 10,000 samples of this size and in 9,540 cases (95.4%) the
C boundary would not have drifted by more than half a mark from xC .

As above, for these samples the distribution of the continuous marks for the percentile p = 0.872

is also presented in Fig. 11. This shows that 88.2% of the marks lie in the range [29.5, 30.5], indicat-
ing that, unlike above, it is more likely that the SEB would have changed from 30 as a result of PAD
than the confidence would suggest. This is due to the closer proximity of xA to the half-integer mark.
In this scenario it is more likely that there would be a change to SEB which would consequently have
an effect on the rank order of candidates. Therefore, some level of caution should be adopted in this
case, perhaps by increasing the confidence used in the calculation of the MRPFP.

F
8Note that because the CDFs used in the industry are calculated from the highest to lowest mark, the values used numeri-

cally for these empirical tests are 1− p in order to obtain agreeing boundary marks.
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Figure 11: Left: The PAD for the grade C prediction on tier-combined 3702/CS in June 2011. The
intersection with the line ∆p(f) = 1/2 is at fmin = 0.0093 (100(1 − γ) = 90%, p = 0.872). Right: The
sample continuous mark distribution for 10,000 samples of size 0.93% of the total entry of 3702/CS
at grade C (p = 0.872).

A unit requiring a rerun

Unit 405007 of GCSE Religious Studies in summer 2011, with a maximum mark of 72, had a to-
tal entry of N = 3, 051. Only 62.2% of marks were FP at the time of the award and hence a rerun
was required. This was performed ten days after the award with 99.6%, which at grade A (a mark of
58) resulted in a 2.26% downwards PAD. The mean and SD at award were x̄ = 48.6 and s = 16.7,
respectively. The Grade A boundary prediction was 32.51% and resulted in the boundary mark of
58 at award. The PAD plot for this unit showed showed that fmin = 79%. This indicates that if many
different samples of size n = 2, 410 of the total entry were taken, then the FP CDF would lie totally
within in the sample CB on 90% of occasions. This is equivalent to saying that on 90% of occasions
the PAD from xA would differ by no more than 1/2. A simulation was run for 10,000 samples of this
size and in 9,269 cases (93.7%) the A boundary would not have drifted by more than half a mark
from xA. It is clear that on this occasion a rerun was warranted, although it could possibly have been
performed earlier.

Summer 2012 exploration

During the summer 2012 awarding series, five units were considered using the methodology: GCSE
Classical Civilisation Units 3F and 3H (CIV3F, CIV3H), A-level Geography Unit 1 (GEOG1), A-level
Biology Unit 5 (BIOL5) and A-level Philosophy Unit 3 (PHIL3). These units were chosen because
there was concern that the PFP would not hit the MRPFP of 75% by award. In contrast to using
historical examinations as above, the population means and SDs were not known during this ex-
ploration. The mean does not appear in the PAD equation (1), but in this case the sample SD will
substitute for the unknown population SD. Below is a summary of these five units:

• Unit CIV3F had a PFP of f = 15% but a total entry of only 132 candidates for which it was too
small to draw solid conclusions, although the model suggested that a MRPFP of fmin = 95%

was required for 90% confidence of avoiding PAD.

• Unit CIV3H, with a total entry of 1,451, had a PFP of f = 46% but the model suggested

FP candidates: an analytical solution to the PAD problem 16 Robert Hales



Centre for Education Research and Policy

fmin = 64%/75% was required for 90%/99% confidence of avoiding PAD.

• Unit GEOG1 was running at PFP f = 58% with a total entry of 21,184, and the model suggested
that fmin = 12%/22% was required for 90%/99% confidence of avoiding PAD.

• Unit BIOL5, with a total entry of 25,015, had f = 47% at the initial run and f = 70% at the
updated run three days later, which was still not at the current acceptable threshold of 75%.
The model suggested that fmin = 9%/18% was required for 90%/99% confidence of avoiding
PAD.

• Finally, unit PHIL3 with total entry 3,264 had f = 52% and the model suggested that fmin =

53%/61% was required for 95%/99% confidence of avoiding PAD.

This exploration was not intended to guide absolutely the decision on whether a unit was ready to
have its mark data run for an award. It was used as a rough guide for evaluating the current ‘state
of play’ of a unit. Most importantly, what it did highlight however was the need to consider other
information when considering problematic units and their PFPs, specifically the total entry. The simu-
lation results showed that the greater the total entry on a unit the less important it is to require a high
PFP. On the other hand, when the total entry on a unit is small, a small PFP is less meaningful and
fewer marking resources should be required in order to attempt to improve the situation (e.g. for the
f = 15% on CIV3F, only 112 more candidates were waiting to be marked).

Discussion

The effect of potential PAD has here been evaluated by providing an SD, the total entry (popula-
tion size), a confidence level and a percentile threshold to Equation 1. For the simulations, the SD
was the population SD, but for live data the SD should be the awarding sample SD. For simulations,
the percentile threshold was chosen such that it encompassed all the judgemental grades for the
unit under consideration, but also not so low as to be too close to the maximum resolution of the
percentiles. From the potential PAD, the theoretical value for the MRPFP was then calculated. With
an awarding sample to hand, further consideration was made about where the continuous grade
boundaries sit with respect to integer marks. This showed that more caution should be taken with
the interpretation of the MRPFP value when grade boundaries sit near half-integer marks. However,
because an SEB at a half-integer is very much a borderline case, which could change as the result
of just one additional candidate on the distribution, the impact of an SEB change in this scenario is
less critical and does not devalue the importance of the MRPFP as estimated by the methodology
presented here.

As was noted earlier, no indication has been given about the conservativeness of the CRs within
the theory, but they are likely to be conservative given that no optimisation of these regions has been
considered. Therefore, the resulting CBs are likely to be wider than necessary and hence the derived
values of the MRPFP are also likely to be generous. This was seen in the simulation results where
the confidence level was always exceeded. Such optimisation could be performed by calculating
approximating CRs and minimising the area of them, which then decreases the conservativeness
(Arnold and Shavelle, 1998).

An assumption of the theory is that the sample at award is random, however this is not neces-
sarily always the case. An example issue that was highlighted during the summer 2012 awarding
series was the effect of ‘candidates with additional sheets’. Such candidates will have used one or
more sheets during their examination that were additional to the main writing space provided on the
examination paper. These additional sheets cannot be processed for use within OLA and hence the
corresponding candidates are discounted from the distributions. Given that such candidates may be
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the higher performers, this adds a possible systematic bias to the distributions during the awarding
process. Cases have even been discovered where the PFP was above the MRPFP of 75% but a
large proportion of the remaining candidates were those with additional sheets. Because the extent
of this is still unknown, further research should be undertaken to investigate this. A theoretical model
that takes into account this type of bias via a skew parameter could also be developed as an exten-
sion of this current work.

A further assumption of the theory, even if the candidates with additional sheets could be accounted
for, is that all of the remaining candidates’ marks arrive randomly. This then implies that the effect
of examiners marking by centre is assumed not to exist. In reality, however, the original candidate
scripts are scanned into the CMI+ system in batch jobs and it is unclear how this is exactly performed.
It is likely that this is done on a centre-by-centre basis, as and when the packs of scripts arrive. This
means that in the earlier stages of marking, the scripts that are available to the examiners for marking
do not form a true random sample but are from only a handful of centres. As time progresses, the
sample of marks would become more and more representative of all the centres. Because the ex-
act methods used by the company DRS who manage this process are unknown, some investigation
should be undertaken to gain a better appreciation of the methods used. This is a separate issue
to that discussed above of introducing skew into the population and the samples drawn from it. This
issue concerns samples being systematically unrepresentative of the population. A theoretical model
that takes into account this type of bias via additional centre variables could also be developed as an
extension of this current work.

Conclusion

This paper has demonstrated that it is theoretically possible to run awards with fewer than the cur-
rently recommended MRPFP 75%, at unit level. There is not a single solution to the PAD problem,
and it has been highlighted that it should be considered on a unit by unit basis. The main driver of the
MRPFP is the total entry of the unit, but it has also been shown that information from the awarding
sample should also be taken into consideration. To appropriately manage the risk surrounding the
consequences of PAD, values of the MRPFP as calculated from the theory could be increased by,
say, 10%. Furthermore, the confidence level could be increased from that used above to 95% or
99% to further minimise the risk of SEB changes due to PAD. As has been highlighted, there is also
further research that could be undertaken to extend the approach presented here.

If the limitations are taken into consideration, the results of this work could be used in the follow-
ing way: because in the PAD equation the most important aspect of the sample SD is just its order,
rather than its exact value, for each unit a value for the ‘representative’ FP SD could be used to calcu-
late a value of the MRPFP, across all judgemental grade boundaries within pthresh and 1−pthresh. Such
a representative value of the FP SD could be acquired from historical data or an ‘ideal’ value. This
could be done in advance of any candidate scripts being marked. During awarding preparation, the
actual awarding SD and the positions of continuous SEBs with respect to the integer marks could be
used to further aid the decision about whether the current PFP is high enough to avoid risking grade
boundary changes resulting from PAD. In the simulations it was revealed that as the population size
doubled, the MRPFP eventually halved, meaning that the sample size corresponding to the MRPFP
approached a fixed value (this was 12,000 for pthresh = 0.1). This key result demonstrates that, more
often than not, it is important to consider PFP values in conjunction with the corresponding awarding
sample sizes.

Robert Hales
13 November 2012
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Appendix A: The Confidence Region

For a sample of size n from a N(µ, σ2) distribution, the Central Limit Theorem says that

X̄ − µ
σ/n

∼ N(0, 1) , (2)

where X̄ is the sample mean

X̄ =
1

n

n∑
i=1

Xi (3)

and that
(n− 1)s2

σ2
∼ χ2

n−1 , (4)

where s2 is the sample variance

s2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 . (5)

Stating (2) using probability notation means that

P (−z(α1/2) < Z < z(α1/2)) = 1− α1 , (6)

where z(α1/2) is the upper α1/2-th percentile of the standard normal distribution function φ(z). This
results in the usual 100(1− α1)% confidence interval (CI) for the population mean µ as

Cµ =
[
X̄ − σX̄z(α1/2), X̄ + σX̄z(α1/2)

]
, (7)

where σX̄ = σ/
√
n is the standard error (SE) of the sampling mean distribution. Similarly for the

variance in (4), the relationship

P (−z(α2/2) < Z < z(α3/2)) = α2 − α3 (8)
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yields the CI for the population variance σ2 as

Cσ2 =

[
(n− 1)s2

z(α3)
,

(n− 1)s2

z(α2)

]
, (9)

where z(α2) and z(α3) are the lower α2-th and upper α3-th percentile of the χ2 distribution, respec-
tively. It is usual to use equal tail precisions in the χ2 distribution, such that α2 = α3. For small sample
sizes, n < 50, this would not be appropriate as it has been shown by trial and error that for suitably
large sample sizes, n > 50, it is optimal to choose α2 = α3 (Arnold and Shavelle, 1998). This is
because the χ2

n distribution is standard normally distributed as n → ∞. Because the χ2
n distribution

has mean n and variance 2n, this means that

χ2
n−1 − (n− 1)√

2(n− 1)
∼ N(0, 1) . (10)

for large n. In probability notation this implies that

P

(
−z(α2/2) <

(n−1)s2

σ2 − (n− 1)√
2(n− 1)

< z(α2/2)

)
= 1− α2 . (11)

Solving this gives an alternative CI for the population variance for large n > 50 as

Cσ2 =

[
s4

s2 + z(α2)σs2
,

s4

s2 − z(α2)σs2

]
, (12)

where σs2 = s2
√

2/(n− 1) is the SE of the sampling variance distribution. This form of CI for σ2 is
useful because it explicitly contains the SE, σs2 .

For a finite population N , which corresponds to the total entry on a unit, a finite population cor-
rection (PFC) has to be applied to the SEs appearing in the CIs in (7) and (12). For µ the correction
is (Rice, 2007)

cµ =
N − n
N − 1

, (13)

and for σ2 the correction takes the more complex form (Cho and Cho, 2008)

cσ2 =
N(N − n)(N2n− 3Nn+ 3n− 3N + 3)

n(N − 3)(N − 2)(N − 1)2
. (14)

Therefore the scalings σµ → cµσµ and σs2 → cs2σs2 are used.

Because the normal distribution and χ2 distribution appearing in (2) and (4) are independent, the
joint CR for the parameter set θ = (µ, σ2) is given by

R(θ) =
{
θ : µ ∈ Cµ, σ2 ∈ Cσ2

}
, (15)

with an associated joint confidence level of γ = 1 − (1 − α1)(1 − α2). The area of such a region is
a constant multiple of s3, which is itself only dependent on the population size N , the sample size n
and the confidence level γ. This area is large for small samples due to the difficulty in estimating σ2

in these cases. In general, it is preferable to optimally proportion the confidence level α2 between
the two tails of the χ2 distribution of the sample variance SE. This means dividing α2 as to minimise
the CR area. For large sample sizes, as would be the case for feasible PFP values, this means
choosing an equal division α2 = α3 as described above and also allowing α1 = α2. This means that
all confidence parameters are determined by the joint confidence level — α1 = 1−

√
1− γ.
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Figure 12: The Confidence Region in (µ, σ2) space for N = 200, f = 0.7, x̄ = 40, s = 16, γ = 0.1,
p = 0.9. The region is bounded by the three curves σ2 = σ2

+, σ2 = σ2
− and σ2

µ. The intersection of σ2
x

with the µ-axis gives the pth quantile of the sample distribution and the intersections of σ2
xmin

and σ2
xmax

with the µ axis give xmin and xmax, respectively, which are the limits of the CB for the pth quantile.
The four vertex labels are explained in the text.

F
Appendix B: The Confidence Band

For a given total entry, PFP, sample mean and sample SD, the CB gives the region in which the
full cohort CDF is likely to lie with confidence 100(1 − γ)%. It is constructed as in (Cheng and Isles,
1983) by considering how the quantiles of the distribution change as the parameter set θ varies in
the confidence region R(θ). As for any location-scale parameter model, the pth quantile is found from
the equation

xp − µ
σ

= Ψ−1(p) ≡ q , (16)

where Ψ−1(p) is the inverse CDF for the standard normal distribution. This gives

σ2 =

(
xp − µ
q

)2

. (17)

The values of θ = (µ, σ2) which give a constant xp thus lie on a quadratic curve with intercept with
the µ-axis at µ = xp. The pth quantile of the sample distribtuion CDF F (x) is given by

xp = x̄+ qs . (18)

For a fixed p, the confidence band that encloses the sample distribution CDF is obtained by consid-
ering how xp varies as θ is constrained to be within R(θ). This depends on the gradient of the curved
part of the boundary of the CR which is

g(µ) =
d

dµ
σ2(µ) =

2n

z2c2µ
(µ− x̄) . (19)

The coordinates of the four ‘corners’ of the CR as shown in Fig. 12 can be found as

(µ−−, σ
2
−) (µ+−, σ

2
−) (µ−+, σ

2
+) (µ++, σ

2
+) , (20)
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where
µπ1,π2

= x̄+ π1
z√
n
σπ2 (21)

gives the four µ-axis values for π1, π2 = ±.

From Eq. (16) this yields

xmin =


µ−− + qσ−, if −∞ < −1/q < g(µ−−)

g−1(−1/q) + qσ(g−1(−1/q)), if g(µ−−) < −1/q < g(µ−+)

µ−+ + qσ+, if g(µ−+) < −1/q < 0

µ−− + qσ−, if 0 < −1/q <∞

(22)

xmax =


µ+− + qσ−, if g(µ+−) < −1/q <∞

g−1(−1/q) + qσ(g−1(−1/q)), if g(µ++) < −1/q < g(µ+−)

µ++ + qσ+, if 0 < −1/q < g(µ++)

µ+− + qσ−, if −∞ < −1/q < 0

(23)

The two bounding curves Fmin and Fmax of the CB are then constructed by computing xmin and
xmax for p ∈ (0, 1), noting that the extremes of this interval are excluded as they cause problems nu-
merically. The CR, as computed in a similar way to the procedure set out in a previous study (Arnold
and Shavelle, 1998), has the shape of a horizontal slice of a parabola. The three bounding curves,
as determined from the CIs (7) and (10), including the FPCs, are given by the equations

σ2(µ) =
n(µ− x̄)

z2c2µ
(24)

σ2
± =

s4

s2 + zσs2cσ2

. (25)

Appendix C: The Post-Awarding Drift

From the CB located around a sample CDF, a plot of the maximum possible deviation (up to the
confidence level) from a mark that would be chosen can be produced for a range of PFP values. This
is used as a measure of PAD. At a particular value p in the percentile range, PAD ∆p(f) is defined
as the difference between the corresponding quantiles as calculated from the sample CDF and the
CDF of one of the boundaries of the CB. The essentially symmetric nature of the CB means we can
choose either. A choice of Fmin, assuming that pthresh � 1/2, results in

∆p(f) = xp − xmin = Ψ−1(p)σ + σ+(f,N)

(
z(α1)cµ(f,N)√

fN
−Ψ−1(p)

)
. (26)

This relationship is derived under the usual assumption that the sample variances s2 estimates the
population variance σ2 (with finite population correction). This is in fact the case as f → 1 and
p → 1/2 where the SE of the sample variance is σσ2 = 0. This less valid for small sample sizes
(n < 50) for which the original assumptions of the CR would be broken anyway. In this scenario, the
PAD would be driven mainly by the PFP f and finite correction cµ:

∆p(f) ∼ z(γ)cµ(f,N)σ√
f

. (27)

Therefore, Eq. (26) can be used to calculate the key value of interest — fmin. This is the PFP required
in order that with 100(1 − γ)% confidence the pth quantile mark on the FP CDF will not deviate by
more than half a mark from the same quantile mark on the sample CDF. This value is found as the
intersection of Eq. (26) with the line ∆p(f) = 1/2.
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