

Student guide: Time of flight mass spectrometry – example questions and answers

01.1	spectrometry is by electron impact. How is this ionisation done?	nass 4 marks]
01.2	A second method of ionising samples in time of flight mass spectrometr by electrospray ionisation. How is this ionisation done?	ry is 4 marks]

01.3	Which method is most likely to lead to the break up of the ions into fragments?		
	[1 mark]		
01.4	Ionisation by electron impact causes removal of one electron from each particle. Write an equation for the ionisation of each of the following species by loss of one electron. [2 marks]		
	Ca		
	C ₂ H ₆		
01.5	Electrospray ionisation creates an ion by protonation of a molecule. Write an equation for the formation of a positive ion by electrospray ionisation of lactic acid $(C_3H_6O_2)$.		
	[1 mark]		
02	The 1+ ions are accelerated using a negatively charged electric plate.		
02.1	Why is a negatively charged plate used? [2 marks]		
02.2	Complete this sentence: The ions are accelerated by an electric field so that they		
	each have the same[1 mark]		
03	The 1+ ions enter the flight tube through a hole in the negatively charged plate.		
03.1	Explain why different ions take different times to travel through the flight tube.		
	[2 marks]		

Which of these ions will reach the detector first? Explain your answer in each case.

ſ	2	marks	1
	_	IIIai No	ı

⁷⁹Br⁺ or ⁸¹Br⁺ _____

¹²C¹H₄⁺ or ¹³C¹H₄⁺ _____

04

The mass spectrum of a sample of gallium is shown.

04.1

What isotopes are present in this element?

[1	mark]
ĮΤ	IIIai Kj

[2 marks]

04.2

Calculate the relative atomic mass of this element. Give your answer to the appropriate number of significant figures. Show your working.

The mass spectrum of the element chlorine (Cl_2) is shown.

Identify the ion responsible for the peak at:

m/z 70 _____

m/z 72 _____

m/z 74 _____

[2 marks]

The mass spectrum shown is of a hydrocarbon that has been produced via electron impact ionisation.

06.1 What is the relative molecular mass of this compound?

[1 mark]

06.2 Why are there peaks with much lower m/z ratios?

[1 mark]

[1 mark]

O7 The mass spectrum shown is of a protein that has been produced by electrospray ionisation.

What is the relative molecular mass of this protein?

[1 mark]

The kinetic energy of the ions in a TOF mass spectrometer is given as: $KE = \frac{1}{2}mv^2$

and the time to travel through the flight tube as: $t = \frac{d}{v}$

where: t = time of flight (s)

KE = kinetic energy of particle (J)

m = mass of the particle (kg)

 $v = \text{velocity of the particle (m s}^{-1})$

d = length of flight tube (m)

08.1	Show how these expressions can be used to show the time of flight			
	as: $t = d\sqrt{\frac{m}{2KE}}$			
	[2 marks]			
00.2	A cample of copper was applyed and found to coptain two isotopes, 42, copper			
08.2	A sample of copper was analysed and found to contain two isotopes, 63-copper and 65-copper. All the ions were accelerated to have 1.000×10^{-16} J of kinetic energy and travelled through a flight tube that was 0.8000 m long. 63 Cu $^+$ ions took 1.829×10^{-5} s.			
	How long would 65 Cu $^+$ ions of mass 1.079 x 10^{-25} kg take to travel along the same flight tube?			
	Give your answer to the appropriate number of significant figures. Show your working.			
	[2 marks]			
	<u> </u>			

Example answers

- 01.1 ✓ high energy electrons
 - √ from hot cathode / electron gun
 - √ fired at sample
 - √ knocks off one electron
- 01.2 ✓ sample dissolved in volatile solvent
 - √ injected through a fine hypodermic needle giving a fine mist / aerosol
 - ✓ tip of needle has high voltage
 - ✓ each gains a proton as it leaves the needle
- 01.3 ✓ electron impact / electron ionisation
- 01.4 \checkmark Ca(g) \rightarrow Ca⁺(g) + e⁻ \checkmark C₂H₆(g) \rightarrow C₂H₆⁺(g) + e⁻
- 01.5 $\checkmark C_3H_6O_2 + H^+ \rightarrow C_3H_7O_2^+$
- 02.1 ✓ as the positively charged ions are attracted to the negative plate
- 02.2 ✓ same kinetic energy
- 03.1 ✓ time of flight depends on mass of ions
 - √ lighter particles travel faster
- $03.2 \checkmark ^{79} Br^+$ as it is lighter
 - \checkmark ¹²C¹H₄⁺ as it is lighter
- 04.1 \checkmark ⁶⁹Ga and ⁷¹Ga
- 04.2 \checkmark (69.0 × 60.1) + (71.0 × 39.9)

$$60.1 + 39.9$$

$$\checkmark = 69.8 (3sf)$$

- 05 ³⁵Cl₂⁺, ³⁵Cl³⁷Cl⁺, ³⁷Cl₂⁺
 - ✓ for correct isotopes
 - √ for + charge in each case
- 06.1 ✓ 56
- 06.2 ✓ due to fragmentation
- 06.3 ✓ due to some molecules containing ²H or ¹³C

08.1
$$\sqrt{v^2} = \frac{2KE}{m}$$
 \therefore $v = \sqrt{\frac{2KE}{m}}$ $\sqrt{t} = \frac{d}{v}$ \therefore $t = d\sqrt{\frac{m}{2KE}}$

08.2
$$\checkmark t = 0.8000 \sqrt{\frac{1.079 \times 10^{-24}}{2 \times 1.000 \times 10^{-16}}}$$

 $\checkmark 1.858 \times 10^{-5} \text{ s (4sf)}$