Reactions of metal ions in aqueous solution Chemistry A-level (7405) This resource (v1.4) represents colours of solutions and products (Specification reference 3.2.6 Reactions of ions in aqueous solution). Students are expected to describe: | Metal | Aqueous ion | Action of NaOH | Action of an
excess of
NaOH(aq) | Action of NH₃(aq) | Action of an excess of NH ₃ (aq) | Action of
Na₂CO₃(aq) | |----------------|--|---|---|---|---|---| | Iron(II) | [Fe(H ₂ O) ₆] ²⁺ (aq)
green solution | Fe(H ₂ O) ₄ (OH) ₂ (s) green ppt goes brown on standing in air | No further change | Fe(H ₂ O) ₄ (OH) ₂ (s) green ppt goes brown on standing in air | No further change | FeCO ₃ (s)
green ppt | | Copper(II) | [Cu(H ₂ O) ₆] ²⁺ (aq)
blue solution | Cu(H ₂ O) ₄ (OH) ₂ (s)
blue ppt | No further change | Cu(H ₂ O) ₄ (OH) ₂ (s)
blue ppt | [Cu(H2O)2(NH3)4]2+(aq) deep blue solution | CuCO ₃ (s)
blue-green ppt | | Iron(III) | [Fe(H ₂ O) ₆] ³⁺ (aq) purple solution may look yellow- brown due to some [Fe(H ₂ O) ₅ (OH)] ²⁺ (aq) | Fe(H ₂ O) ₃ (OH) ₃ (s) brown ppt (ppt may look orange-brown) | No further change | Fe(H ₂ O) ₃ (OH) ₃ (s) brown ppt (ppt may look orange-brown) | No further change | Fe(H ₂ O) ₃ (OH) ₃ (s) brown ppt (ppt may look orange-brown) and CO ₂ gas evolved | | Aluminium(III) | [Al(H ₂ O) ₆] ³⁺ (aq)
colourless solution | Al(H ₂ O) ₃ (OH) ₃ (s)
white ppt | [Al(OH) ₄] ⁻ (aq)
colourless solution | Al(H ₂ O) ₃ (OH) ₃ (s)
white ppt | No further change | $Al(H_2O)_3(OH)_3(s)$ white ppt and CO_2 gas evolved | ## Section 3.2.5.2: Substitution reactions Substitution reactions involving Cobalt (II) were previously required knowledge under the old A-level Chemistry specification (2420). These reactions and the colours of the solutions and products are no longer required knowledge for the current A-level Chemistry specification (7405). ## Section 3.2.5.5: Variable oxidation states Students are also expected to know the colours of the vanadium ions produced when a solution of ammonium vanadate(V) (NH₄VO₃) is reduced by zinc metal under acidic conditions. | Oxidation state | V(V) | V(IV) | V(III) | V(II) | |----------------------------|----------------------------|--|---|---| | Species in acidic solution | $[VO_2(H_2O)_4]^{\dagger}$ | [VO(H ₂ O) ₅] ²⁺ | [V(H ₂ O) ₆] ³⁺ | [V(H ₂ O) ₆] ²⁺ | | Colour of solution | yellow | blue | green | purple |