

© 2024 AQA 1 of 15

Notes and guidance: Pseudo-code
The pseudo-code is described in this resource to help students prepare for their AQA GCSE Computer Science exam (8525/1).

We will use this consistent style of pseudo-code in all assessment material. This will ensure that, with enough preparation, students will
understand the syntax of the pseudo-code used in assessments. Students do not have to use this style of pseudo-code in their own work
or written assessments, although they are free to do so. The only direction to students when answering questions or describing algorithms
written in pseudo-code is that their code is clear, consistent and unambiguous.

This resource may be updated as required and the latest version will always be available on our website. It is not confidential and can be
freely shared with students.

General Syntax
• IntExp, RealExp, BoolExp, CharExp and StringExp mean any expression which can be evaluated to an integer, real, Boolean

(False or True), character or string respectively.
• Exp means any expression.
• Emboldened pseudo-code is used to indicate the keywords/operators.
• Exam paper questions will assume that indexing for arrays and strings starts at 0 unless specifically stated otherwise.

© 2024 AQA 2 of 15

Comments

Single line comments # comment

Multi-line comments # comment
comment and so on

Variables and constants

Variable assignment Identifier ← Exp
 a ← 3
 b ← a + 1
 c ← 'Hello'

Constant assignment CONSTANT IDENTIFIER ← Exp

CONSTANT PI ← 3.141
CONSTANT CLASS_SIZE ← 23

Names of constants will always be
written in capitals

© 2024 AQA 3 of 15

Arithmetic operations

Standard arithmetic operations

+
-
*
/

Used in the normal way with brackets to indicate
precedence where needed. For example, a + b * c
would multiply b and c together and then add the
result to a, whereas (a + b) * c would add a and b
together and then multiply the result by c.

The / symbol is used instead of ÷ for division
(for integer division use DIV)

Integer division IntExp DIV IntExp
 9 DIV 5 evaluates to 1
 5 DIV 2 evaluates to 2
 8 DIV 4 evaluates to 2

Modulus operator IntExp MOD IntExp
 9 MOD 5 evaluates to 4
 5 MOD 2 evaluates to 1
 8 MOD 4 evaluates to 0

© 2024 AQA 4 of 15

Relational operators for types that can be clearly ordered

Less than Exp < Exp
4 < 6
'A' < 'B'
'adam' < 'adele'

Greater than Exp > Exp 4.1 > 4.0

Equal to Exp = Exp 3 = 3

Not equal to Exp ≠ Exp qty ≠ 7

Less than or equal to Exp ≤ Exp 3 ≤ 4
4 ≤ 4

Greater than or equal to Exp ≥ Exp 4 ≥ 3
4.5 ≥ 4.5

Boolean operations

Logical AND BoolExp AND BoolExp (3 = 3) AND (3 ≤ 4)

Logical OR BoolExp OR BoolExp (x < 1) OR (x > 9)

Logical NOT NOT BoolExp NOT (a < b)

© 2024 AQA 5 of 15

Indefinite (condition controlled) iteration

REPEAT-UNTIL (repeat the
statements until the Boolean
expression is True).

REPEAT

 # statements here

UNTIL BoolExp

a ← 1
REPEAT
 OUTPUT a
 a ← a + 1
UNTIL a = 4
will output 1, 2, 3

WHILE-ENDWHILE (while the
Boolean expression is True, repeat
the statements).

WHILE BoolExp

 # statements here

ENDWHILE

a ← 1
WHILE a < 4
 OUTPUT a
 a ← a + 1
ENDWHILE
will output 1, 2, 3

© 2024 AQA 6 of 15

Definite (count controlled) iteration

FOR-TO-[STEP]-ENDFOR
(If STEP IntExp is
missing it is considered to
be 1).

FOR Identifier ← IntExp TO IntExp [STEP IntExp]

 # statements here

ENDFOR

If STEP IntExp is omitted the step value is 1.
Note that in STEP IntExp the value of IntExp
can be negative (see the third example)

The loop counter variable (a in the examples)
is always declared in the FOR statement and
does not exist after the loop has finished.
It never takes any value above the upper (or
lower) limit given in the statement.

FOR a ← 1 TO 3
 OUTPUT a
ENDFOR
will output 1, 2, 3

FOR a ← 1 TO 5 STEP 2
 OUTPUT a
ENDFOR
will output 1, 3, 5

FOR a ← 5 TO 1 STEP -2
 OUTPUT a
ENDFOR
will output 5, 3, 1

FOR-IN-ENDFOR
(repeat the statements
the number of times
that there are characters
in a string).

FOR Identifier IN StringExp

 # statements here

ENDFOR

The loop variable (char in the examples)
is always declared in the FOR statement and
does not exist after the loop has finished.

length ← 0
FOR char IN message
 length ← length + 1
ENDFOR
will calculate the
number of characters
in message

reversed ← ''
FOR char IN message
 reversed ← char + reversed
ENDFOR
OUTPUT reversed
will output the
string in reverse

© 2024 AQA 7 of 15

Selection

IF-THEN-ENDIF (execute the
statements only if the Boolean
expression is True).

IF BoolExp THEN
statements here

ENDIF

a ← 1
IF (a MOD 2) = 0 THEN
 OUTPUT 'even'
ENDIF

IF-THEN-ELSE-ENDIF (execute
the statements following the
THEN if the Boolean expression
is True, otherwise execute the
statements following the ELSE).

IF BoolExp THEN
statements here

ELSE
statements here

ENDIF

a ← 1
IF (a MOD 2) = 0 THEN
 OUTPUT 'even'
ELSE
 OUTPUT 'odd'
ENDIF

NESTED IF-THEN-ELSE ENDIF
(use nested versions of the
above to create more complex
conditions).

Note that IF statements can be
nested inside the THEN part, the
ELSE part or both.

IF BoolExp THEN
statements here

ELSE
 IF BoolExp THEN
 # statements here

ELSE
 # statements here
ENDIF

ENDIF

a ← 1
IF (a MOD 4) = 0 THEN
 OUTPUT 'multiple of 4'
ELSE
 IF (a MOD 4) = 1 THEN

 OUTPUT 'leaves a remainder of 1'
 ELSE
 IF (a MOD 4) = 2 THEN

 OUTPUT 'leaves a remainder of 2'
 ELSE

 OUTPUT 'leaves a remainder of 3'
 ENDIF
ENDIF

ENDIF

© 2024 AQA 8 of 15

Selection (continued)

IF-THEN-ELSE IF ENDIF (removes
the need for multiple
indentation levels).

IF BoolExp THEN
statements here

ELSE IF BoolExp THEN
statements here
possibly more ELSE IFs

ELSE
statements here

ENDIF

a ← 1
IF (a MOD 4) = 0 THEN
 OUTPUT 'multiple of 4'
ELSE IF (a MOD 4) = 1 THEN

OUTPUT 'leaves a remainder of 1'
ELSE IF (a MOD 4) = 2 THEN

OUTPUT 'leaves a remainder of 2'
ELSE

OUTPUT 'leaves a remainder of 3'
ENDIF

© 2024 AQA 9 of 15

Arrays

Assignment Identifier ← [Exp, … ,Exp] primes ← [2, 3, 5, 7, 11, 13]

Accessing an element Identifier[IntExp]

primes[0]

evaluates to 2

(questions on exam papers will start indexing
at 0 unless specifically stated otherwise)

Updating an element Identifier[IntExp] ← Exp
primes[5] ← 17

array is now [2, 3, 5, 7, 11, 17]

Accessing an element in a
two-dimensional array

Identifier[IntExp][IntExp]

table ← [[1, 2],[2, 4],[3, 6],[4, 8]]

table[3][1]

evaluates to 8 as second element
(with index 1) of fourth array
(with index 3) in table is 8

Updating an element in a
two-dimensional array

Identifier[IntExp][IntExp] ← Exp

table[3][1] ← 16

table is now
#[[1, 2],
[2, 4],
[3, 6],
[4, 16]]

© 2024 AQA 10 of 15

Arrays (continued)

Array length LEN(Identifier)

LEN(primes)
evaluates to 6 using example above

LEN(table)
evaluates to 4 using example above

LEN(table[0])
evaluates to 2 using example above

FOR-IN-ENDFOR
(repeat the statements
the number of times
that there are elements
in an array)

NOTE: array items
cannot be modified
using this method

FOR Identifier IN array

 # statements here

ENDFOR

primes ← [2, 3, 5, 7, 11, 13]
total ← 0
FOR prime IN primes
 total ← total + prime
ENDFOR
OUTPUT 'Sum of the values in primes is'
OUTPUT total

© 2024 AQA 11 of 15

Records

Record declaration

RECORD Record_identifier

 field1 : <data type>
 field2 : <data type>
 …

ENDRECORD

RECORD Car
 make : String
 model : String
 reg : String
 price : Real
 noOfDoors : Integer
ENDRECORD

Variable Instantiation
varName ← Record_identifier(value1,
value2, …)

myCar ← Car('Ford', 'Focus', 'DX17 GYT',
1399.99, 5)

Assigning a value to a field in a
record

varName.field ← Exp

myCar.model ← 'Fiesta'

The model field of the myCar
record is assigned the value
'Fiesta'.

Accessing values of fields
within records

varName.field

OUTPUT myCar.model

Will output the value stored in the
model field of the myCar record

© 2024 AQA 12 of 15

Subroutines
Note: for the purposes of this pseudo-code definition subroutines that contain a RETURN keyword are functions. Those that do not contain a RETURN
keyword are procedures.

Subroutine definition

SUBROUTINE Identifier(parameters)

 # statements here

ENDSUBROUTINE

SUBROUTINE showAdd(a, b)
 result ← a + b
 OUTPUT result
ENDSUBROUTINE

SUBROUTINE sayHi()
 OUTPUT 'Hi'
ENDSUBROUTINE

Both of these subroutines are procedures

Subroutine return value RETURN Exp

SUBROUTINE add(a, b)
 result ← a + b
 RETURN result
ENDSUBROUTINE

This subroutine is a function

Calling subroutines

Subroutines without a return value

Identifier(parameters)

Subroutines with a return value

Identifier ← Identifier(parameters)

showAdd(2, 3)

answer ← add(2, 3) * 6

© 2024 AQA 13 of 15

String handling

String length LEN(StringExp)
LEN('computer science')

evaluates to 16(including space)

Position of a character POSITION(StringExp, CharExp)

POSITION('computer science', 'm')

evaluates to 2 (as with arrays
exam papers will start
indexing at 0 unless
specifically stated otherwise)

Substring (the substring is
created by the first parameter
indicating the start position
within the string, the second
parameter indicating the final
position within the string and the
third parameter being the string
itself).

SUBSTRING(IntExp, IntExp, StringExp)
SUBSTRING(2, 9, 'computer science')

evaluates to 'mputer s'

Concatenation StringExp + StringExp
'computer' + 'science'

evaluates to 'computerscience'

© 2024 AQA 14 of 15

String and Character Conversion

Converting string to integer STRING_TO_INT(StringExp)
STRING_TO_INT('16')

evaluates to the integer 16

Converting string to real STRING_TO_REAL(StringExp)
STRING_TO_REAL('16.3')

evaluates to the real 16.3

Converting integer to string INT_TO_STRING(IntExp)
INT_TO_STRING(16)

evaluates to the string '16'

Converting real to string REAL_TO_STRING(RealExp)
REAL_TO_STRING(16.3)

evaluates to the string '16.3'

Converting character to
character code

CHAR_TO_CODE(CharExp)
CHAR_TO_CODE('a')

evaluates to 97 using ASCII/Unicode

Converting character code to
character

CODE_TO_CHAR(IntExp)
CODE_TO_CHAR(97)

evaluates to 'a' using ASCII/Unicode

© AQA 2024 and its licensors. All rights reserved. 15 of 15

Input/output

User input USERINPUT a ← USERINPUT

Output OUTPUT StringExp, … StringExp

OUTPUT a
OUTPUT a, g

The output statement can be followed by
multiple StringExp separated by commas

Random number generation

Random integer generation
(between two integers
inclusively).

Identifier ← RANDOM_INT(IntExp, IntExp)

diceRoll ← RANDOM_INT(1, 6)

will randomly generate an
integer between 1 and 6
inclusive

