

Notes and guidance: Python
The Python code is described below to help students prepare for their AQA GCSE Computer Science exam (8525/1). It is based on Python version
3 only.

We will use this consistent style of Python code in all assessment material. This will ensure that, with enough preparation, students will understand
the syntax of the code used in assessments. Students do not have to use this style of code in their own work or written assessments, although they
are free to do so. The only direction to students when answering questions or describing algorithms written in code is that their code is clear,
consistent and unambiguous.

This resource may be updated as required and the latest version will always be available on our website. It is not confidential and can be freely
shared with students.

General Syntax
• Code is shown in this font.
• Exp means any expression.
• IntExp, RealExp, BoolExp, StringExp and ListExp mean any expression which can be evaluated to an integer, real, Boolean

(False or True), string or list respectively.

Indentation
Python uses indentation to indicate the range of statements controlled by iteration and selection statements (as well as declarations for subroutines
and classes when used to implement records). Indentation will be shown with three spaces per indentation level, although if doing so makes lines
too long for the page this may be reduced to two spaces. Questions will show indentation guides (vertical lines) within the answer space. Students
should be encouraged to use these to explicitly show their indentation.

© AQA 2023 2 of 20

Comments

Single line comments # A comment

Multi-line comments # A comment
Another comment

String and character literals
String and character literals will be delimited using the " (double quote) character.

Type of variables
Since Python does not type variables, but only the value that a variable 'has', it is possible to use a variable to hold a string, then an integer, then a
Boolean and so on. Students should be taught that, for the purposes of assessment, the type of the value first assigned to a variable will be taken
to declare the type of that variable. For example, totalCost = 2.45 would result in totalCost having a data type of Real. Within that
program totalCost will then always contain real values.

© AQA 2023 3 of 20

Variables and constants
Variable names will be written in camel case eg numberOfItemsSold. Camel case is the practice of writing phrases without spaces or
punctuation, indicating the separation of words with a single capitalised letter and the first word starting with either case.

Constant names will be written in upper case, using an underscore to indicate a break between words, eg ACCELERATION_DUE_TO_GRAVITY.

Although Python considers names such as message and Message to refer to distinct variables, questions will not include any variables whose
names differ solely in case.

Questions will use meaningful variable names wherever possible, eg quantityInStock, quantity or qty rather than just n to hold the
quantity of an item in stock. For layout and/or lack of context reasons#, this resource may not always follow this advice. This rule may not be
followed for common idioms, eg using i as a loop index or for exam-related reasons.

Variable assignment Identifier = Exp

aNumber = 3
anotherNumber = aNumber + 1
theString = "Hello"
message = "Invalid number"
totalNumberOfItems = 0

Constant assignment IDENTIFIER = Exp CLASS_SIZE = 23
PI = 3.141

© AQA 2023 4 of 20

Arithmetic operations

Standard arithmetic operations

+
-
*
/

Used in the normal way with brackets to indicate
precedence where needed. So, a + b * c would
multiply b and c together and then add the result to a,
whereas (a + b) * c would add a and b together
and then multiply the result by c.

Brackets may be used to indicate precedence even
where not strictly necessary, eg testing for divisibility
by 3 could be written as (n % 3) == 0 rather than
n % 3 == 0

Integer division IntExp // IntExp
9 // 5 evaluates to 1
5 // 2 evaluates to 2
8 // 4 evaluates to 2

Modulus operator IntExp % IntExp
9 % 5 evaluates to 4
5 % 2 evaluates to 1
8 % 4 evaluates to 0

© AQA 2023 5 of 20

Relational operators for types that can be clearly ordered (numbers, strings, characters)

Less than Exp < Exp
4 < 6
"A" < "B"
"adam" < "adele"

Greater than Exp > Exp 4.1 > 4.0

Equal to Exp == Exp 3 == 3

Not equal to Exp != Exp qty != 7

Less than or equal to Exp <= Exp 3 <= 4
4 <= 4

Greater than or equal to Exp >= Exp 4 >= 3
4.5 >= 4.5

Boolean operations

Logical AND BoolExp and BoolExp (3 == 3) and (3 <= 4)

Logical OR BoolExp or BoolExp (x < 1) or (x > 9)

Logical NOT not BoolExp not (a < b)

© AQA 2023 6 of 20

Indefinite (condition controlled) iteration

WHILE (while the Boolean expression is
True, repeat the statements). If the
Boolean expression is False the first
time the while statement is reached
then the indented statements are never
executed.

while BoolExp:
 # indented statements here

a = 1
while a < 4:
 print(a)
 a = a + 1
outputs 1, 2, 3

whereas

a = 5
while a < 4:
 print(a)
 a = a + 1
does not output anything since
a < 4 is false the first time the
while is encountered

Python does not have the equivalent of a
REPEAT-UNTIL (repeat the statements
until the Boolean expression is True)
but this will be simulated using a while
structure if required.

statements here
while BoolExp:
 # copy of statements here (indented)

a = 1

print(a)
a = a + 1
carryOn = input("Continue? ")
while carryOn != "N":
 print(a)
 a = a + 1
 carryOn = input("Continue? ")
outputs 1, … until "N" is entered

© AQA 2023 7 of 20

Definite (count controlled) iteration

FOR
(repeat the statements
the number of times
indicated by the range
function, each time giving the
loop variable (Identifier)
the value of the next
value/number in the range).

for Identifier in range(IntExp):
 # indented statements here

With only one IntExp inside the brackets
Identifier will first have the value 0, 1,
2, all the way up (in steps of 1) to the
value of IntExp – 1

for Identifier in range(IntExp1, IntExp2):
 # indented statements here

With two IntExps inside the brackets
Identifier will first have the value IntExp1,
then IntExp1 + 1, IntExp1 + 2, all the way
up (still in steps of 1) to the value of
IntExp2 - 1

for Identifier in range(IntExp1, IntExp2, IntExp3):
 # indented statements here

With three IntExps inside the brackets
Identifier will first have the value IntExp1,
then IntExp1 + IntExp3, IntExp1 + 2 * IntExp3,
all the way up (or down if IntExp3 is negative)
to the value of IntExp2 – 1 (or IntExp2 + 1 if
IntExp3 is negative)

for i in range(7):
 print(i)

outputs 0, 1, 2, 3, 4, 5, 6
7 values are output, the last
one being 6

for i in range(1, 7):
 print(i)

outputs 1, 2, 3, 4, 5, 6

for i in range(1, 7, 2):
 print(i)

outputs 1, 3, 5

for i in range(7, 1, -2):
 print(i)

outputs 7, 5, 3

© AQA 2023 8 of 20

Definite (count controlled) iteration (continued)

FOR
(repeat the statements
the number of times
that there are characters
in a string, each time giving
Identifier the value of the
next character in the string).

for Identifier in StringExp:
 # indented statements here

length = 0
for char in message:
 length = length + 1
print(length)
calculate the number of
characters in message
and output it

reversed = ""
for char in message:
 reversed = char + reversed
print(reversed)
reversed is set to the
reverse of message and
output
eg if message == "Hello"
then reversed will become
"olleH"

© AQA 2023 9 of 20

Selection

IF-THEN-ENDIF (execute the
statements only if the Boolean
expression is True: see Python
Boolean expressions above).

if BoolExp:
 # indented statements here

a = 1
if (a % 2) == 0:
 print("even")

IF-THEN-ELSE-ENDIF (execute
the statements following the THEN
if the Boolean expression is True,
otherwise execute the statements
following the ELSE)/.

if BoolExp:
 # indented statements here
else:
 # indented statements here

a = 1
if (a % 2) == 0:
 print("even")
else:
 print("odd")

© AQA 2023 10 of 20

Selection (continued)

NESTED IF-THEN-ELSE ENDIF
(use nested versions of the above
to create more complex
conditions).

Note that IF statements can be
nested inside the THEN part, the
ELSE part or both.

if BoolExp:
 # indented statements here
else:
 if BoolExp:
 # indented statements here
 else:
 # indented statements here

a = 1
if (a % 4) == 0:
 print("multiple of 4")
else:
 if (a % 4) == 1:
 print("leaves a remainder of 1")
 else:
 if (a % 4) == 2:
 print("leaves a remainder of 2")
 else:
 print("leaves a remainder of 3")

IF-THEN-ELSE IF ENDIF
(removes the need for multiple
indentation levels).

if BoolExp:
indented statements here

elif BoolExp:
indented statements here
possibly more elifs

else:
indented statements here

a = 1
if (a % 4) == 0:
 print("multiple of 4")
elif (a % 4) == 1:
 print("leaves a remainder of 1")
elif (a % 4) == 2:
 print("leaves a remainder of 2")
else:
 print("leaves a remainder of 3")

© AQA 2023 11 of 20

Arrays

Assignment Identifier = [Exp, … ,Exp] primes = [2, 3, 5, 7, 11, 13]

Accessing an element
(indexing) Identifier[IntExp]

print(f"Only even prime is {primes[0]}")

prints "Only even prime is 2"

Updating an element Identifier[IntExp] = Exp
primes[5] = 17

array is now [2, 3, 5, 7, 11, 17]

Accessing an element in a
two-dimensional array Identifier[IntExp][IntExp]

table = [[1, 2], [2, 4], [3, 6], [4, 8]]

print(f"Row 4 column 2: {table[3][1]}")

prints "Row 4 column 2: 8" as the second
element (with index 1) of fourth element
(with index 3) in array is 8

Note that table[1][3] would give an error
since there is no fourth element of the
second element in table

Updating an element in a
two- dimensional array Identifier[IntExp][IntExp] = Exp

table[3][1] = 16

table is now
[[1, 2], [2, 4], [3, 6], [4, 16]]

© AQA 2023 12 of 20

Arrays (continued)

Array length len(Identifier)

len(primes)
evaluates to 6 using example above

len(table)
evaluates to 4 using example above

len(table[0])
evaluates to 2 using example above

FOR
(repeat the statements
the number of times
that there are elements in a
list, each time giving
Identifier the value of the
next element in the list).

for Identifier in ListExp:
 # indented statements here

ages = [15, 27, 19, 18, 17]
total = 0
for age in ages:
 total = total + age
mean = total / len(ages)
print(mean)
calculates the total of the ages
held in the array and the mean
age and then outputs the mean

© AQA 2023 13 of 20

Records

Record declaration (exam
questions will use this method to
declare and use records).

class RecordName:
 def __init_ (self, v1, v2, …):
 self.field1 = v1
 self.field2 = v2
 …

__init__ is the constructor and
must have this name with two
underscores before init and two
after. The self parameter is
essential. The name of the class
will start with a capital letter.

class Car:
 def __init__(self, mk, md, rg, pr, ds):
 self.make = mk
 self.model = md
 self.reg = rg
 self.price = pr
 self.noOfDoors = ds

each field in the record must be defined
by preceding it with self. which 'adds'
that field to the record when it is
created

Variable instantiation varName = RecordName(v1, v2, …) myCar = Car("Ford", "Focus", "DX17 GYT",
1399.99, 5)

Assigning a value to a field in a
record varName.field = Exp

myCar.model = "Fiesta"

The model field of the myCar
record is assigned the value
"Fiesta".

Accessing values of fields within
records varName.field

print(myCar.model)

Outputs the value stored in the
model field of the myCar record

© AQA 2023 14 of 20

Subroutines

Note: subroutines that contain a return keyword followed by a value are functions. Those that do not contain a return keyword, or that contain one with
no value after it, are procedures.

Subroutine definition def Identifier(parameters):
 # indented statements here

def showAdd(a, b):
 result = a + b
 print(result)

def sayHi():
 print("Hi")

Both of these subroutines are procedures

Subroutine return value return Exp

def add(a, b):
 result = a + b
 return result

This subroutine is a function

Calling subroutines

Subroutines without a return value

Identifier(parameters)

Subroutines with a return value

Identifier = Identifier(parameters)

Subroutine without a return value
showAdd(2, 3)

Subroutine with a return value
num1 = float(input("First number? "))
num2 = float(input("Second number? "))
answer = add(num1, num2) * 6

© AQA 2023 15 of 20

String handling

String length len(StringExp) len("computer science")
evaluates to 16 (includes space)

Position of a character StringExp.find(CharExp)

"computer science".find("m")
evaluates to 2

title = "Algorithms"
space = title.find(" ")
space will have the value -1 since
title does not contain a space

Substring using slices (the substring
runs from the character at the first
IntExp to the character one
position before second IntExp).

StringExp[IntExp:IntExp]

title = "Computer Programs"
print(title[9:17])

prints the string "Programs"

If the first number is omitted it
defaults to 0 (the start of the
string) and if the second number is
omitted it defaults to the length of
the string. So

print(title[:7])
prints the string "Compute", and

print(title[12:])
prints the string "grams"

© AQA 2023 16 of 20

String handling (continued)

Accessing a single character in a
string (this treats a string as if it
were an array).

StringExp[IntExp]
title = "Computer Science"
print(title[9])
prints "S"

Concatenation StringExp + StringExp

print("computer" + "science")
prints the string "computerscience"

Note that no space is automatically
added between each string

© AQA 2023 17 of 20

String and Character Conversion

Converting string to integer int(StringExp)
int("16")

evaluates to the integer 16

Converting string to real float(StringExp)
float("16.3")

evaluates to the float (real) 16.3

Converting integer to string str(IntExp)
str(16)

evaluates to the string "16"

Converting real to string str(RealExp)
str(16.3)

evaluates to the string "16.3"

Converting character to character
code ord(CharExp)

ord("a")

evaluates to 97 using ASCII/Unicode

Converting character code to
character chr(IntExp)

chr(97)

evaluates to "a" using ASCII/Unicode

© AQA 2023 18 of 20

Input/output

User input

input()

input(StringExp)
In this second form StringExp is printed to the screen
and the cursor waits for input directly after it, so
StringExp acts as a prompt.

name = input()
input returns a string, so int() or
float() must be used to convert the
string to an integer or a float

quantity = int(input())
price = float(input())

name = input("What is your name? ")

quantity = int(input("How many cans? "))
price = float(input("How much? "))

© AQA 2023 19 of 20

Input/output (continued)

Output print(Exp, …, Exp)

print(a)
print(a, g)

Each Exp is printed with a space between
items. For example

qty = 15
print(f"Quantity {qty}")
prints the string "Quantity 15"

Once all the Exps are printed then the
cursor moves to a new line (this new
line behaviour can be changed by adding
end=""). So

print("Mary had ")
print("a little lamb")
will print the text over two lines, but

print("Mary had ", end="")
print("a little lamb")
will print the text on the same line

Formatted outputs will be shown
using interpolated strings (f""
strings).

f"…{identifier}…{identifier}…"

name = "BT"
staff = 125000

print(f"{name} has {staff} staff")

outputs "BT has 125000 staff"

© AQA 2023 and its licensors. All rights reserved. 20 of 20

Random number generation

Random integer generation
(The first IntExp is inclusive,
the second IntExp is
exclusive).

from random import randrange
Identifier = randrange(IntExp, IntExp)

from random import randrange
num1 = randrange(3, 7)

generates an integer between 3 and 6

