

Notes and guidance: VB.NET
The VB.NET code is described below to help students prepare for their AQA GCSE Computer Science exam (8525/1).
We will use a consistent style of VB.NET code in all assessment material. This will ensure that, with enough preparation, students will understand
the syntax of the code used in assessments. Students do not have to use this style of code in their own work or written assessments, although they
are free to do so. The only direction to students when answering questions or describing algorithms written in code is that their code is clear, consistent
and unambiguous.
This resource may be updated as required and the latest version will always be available on our website. It is not confidential and can be freely shared
with students.

General Syntax
• Code is shown in this font
• DataType means a datatype such as Integer, Single, Double, Boolean, Char or String.
• Exp means any expression.
• IntExp, RealExp, BoolExp, StringExp, CharExp and ListExp mean any expression which can be evaluated to an integer, real,

Boolean (False or True), string, character or list respectively.

Indentation
VB.NET code will use indentation to indicate the range of statements controlled by iteration and selection statements (as well as declarations for
subroutines). Indentation will be shown with three spaces per indentation level, although if doing so makes lines too long for the page, this may be
reduced to two spaces. Questions will show indentation guides (vertical lines) within the answer space. Students should be encouraged to use
these to explicitly show their indentation.

© 2023 AQA 2 of 22

Comments

Single line comments ' A comment

Multi-line comments ' A comment
' Another comment

String and character literals
String and character literals will be delimited using the " (double quote) character.

© 2023 AQA 3 of 22

Variables and constants
Variable names will be written in camel case eg numberOfItemsSold. Camel case is the practice of writing phrases without spaces or
punctuation, indicating the separation of words with a single capitalised letter and the first word starting with either case.

Constant names will be written in upper case, using an underscore to indicate a break between words, eg ACCELERATION_DUE_TO_GRAVITY.

Questions will use meaningful variable names wherever possible, eg quantityInStock, quantity or qty rather than just n to hold the
quantity of an item in stock. For layout and/or lack of context reasons, this resource may not always follow this advice. This rule may not be followed
for common idioms, eg using i as a loop index or for exam-related reasons.

Before a variable is used, it will be declared in a Dim statement. This will give the name of the variable, its data type and, optionally, an initial value.
Note that multiple variables may be defined in the same Dim statement and given the same data type. If an initial value is given and its data type is
unambiguous then the data type may be omitted; "S", 0 are examples of ambiguous values since "S" could be a string or a character, and 0 could
be integer or single.

Variable declaration
Dim Identifier As DataType
Dim Identifier As DataType = Value

Dim aNumber As Integer
Dim anotherNumber As Integer = 0
Dim theString, Message As String
' Both theString and Message are
' declared as strings

Variable assignment Identifier = Exp

aNumber = 3
anotherNumber = aNumber + 1
theString = "Hello"
message = "Invalid number"
totalNumberOfItems = 0

Constant declaration
Const IDENTIFIER = Exp

Const IDENTIFIER As DataType = Value

Const CLASS_SIZE = 23
Const PI = 3.141

Const TOTAL As Single = 0.0

© 2023 AQA 4 of 22

Arithmetic operations

Standard arithmetic operations

+
-
*
/

Used in the normal way with brackets to indicate
precedence where needed. So, a + b * c would
multiply b and c together and then add the result to a,
whereas (a + b) * c would add a and b together
and then multiply the result by c.

Brackets may be used to indicate precedence even
where not strictly necessary, eg testing for divisibility
by 3 could be written as (n Mod 3) = 0 rather
than n Mod 3 = 0

Integer division IntExp \ IntExp
9 \ 5 evaluates to 1
5 \ 2 evaluates to 2
8 \ 4 evaluates to 2

Modulus operator IntExp Mod IntExp
9 Mod 5 evaluates to 4
5 Mod 2 evaluates to 1
8 Mod 4 evaluates to 0

© 2023 AQA 5 of 22

Relational operators for types that can be clearly ordered (numbers, strings, characters)

Less than Exp < Exp
4 < 6
"A" < "B"
"adam" < "adele"

Greater than Exp > Exp 4.1 > 4.0

Equal to Exp = Exp 3 = 3

Not equal to Exp <> Exp qty <> 7

Less than or equal to Exp <= Exp 3 <= 4
4 <= 4

Greater than or equal to Exp >= Exp 4 >= 3
4.5 >= 4.5

Boolean operations

Logical AND BoolExp And BoolExp (3 = 3) And (3 <= 4)

Logical OR BoolExp Or BoolExp (x < 1) Or (x > 9)

Logical NOT Not BoolExp Not (a < b)

© 2023 AQA 6 of 22

Indefinite (condition controlled) iteration

WHILE (while the Boolean expression is
True, repeat the statements). If the
Boolean expression is False the first
time the While statement is reached
then the indented statements are never
executed.

While BoolExp
 ' indented statements here
End While

Dim a As Integer = 1
While a < 4
 Console.WriteLine(a)
 a = a + 1
End While
' outputs 1, 2, 3

whereas

Dim a As Integer = 5
While a < 4
 Console.WriteLine(a)
 a = a + 1
End While
' does not output anything since
' a < 4 is false the first time the
' While is encountered

© 2023 AQA 7 of 22

Indefinite (condition controlled) iteration (continued)

Another form of the WHILE works in
exactly the same way as above (notice
the similarity between this form and that
in REPEAT-UNTIL).

Do While BoolExp
 ' indented statements here
Loop

Dim a As Integer = 1
Do While a < 4
 Console.WriteLine(a)
 a = a + 1
Loop
' outputs 1, 2, 3

whereas

Dim a As Integer = 5
Do While a < 4
 Console.WriteLine(a)
 a = a + 1
Loop
' does not output anything since
' a < 4 is false the first time the
' While is encountered

REPEAT-UNTIL (repeat the statements
until the Boolean expression is True).
The indented statements are always
executed at least once.

Do
 ' indented statements here
Loop Until BoolExp

Dim a As Integer = 1
Dim carryOn As String
Do
 Console.WriteLine(a)
 a = a + 1
 Console.Write("Continue? ")
 carryOn = Console.ReadLine()
Loop Until carryOn = "N"
' outputs 1, … until "N" is entered

© 2023 AQA 8 of 22

Definite (count controlled) iteration

FOR
(repeat the statements
the number of times
indicated, each time giving the
loop variable (Identifier)
the value of the next
value/number in the range).
As DataType may be
omitted if the type is
unambiguous (see the fourth
example).

For Identifier As DataType = IntExp1 To IntExp2
 ' indented statements here
Next
' Identifier will first have the value IntExp1,
' then IntExp1 + 1, IntExp1 + 2, all the way
' up (still in steps of 1) to the value of
' IntExp2

For Identifier As DataType = IntExp1 To IntExp2 Step IntExp3
 ' indented statements here
Next
' Identifier will first have the value IntExp1,
' then IntExp1 + IntExp3, IntExp1 + 2 * IntExp3,
' all the way up (or down if IntExp3 is negative)
' to the value of IntExp2

For i As Integer = 0 To 6
 Console.WriteLine(i)
Next
' outputs 0, 1, 2, 3, 4, 5, 6

For i As Integer = 1 To 7
 Console.WriteLine(i)
Next
' outputs 1, 2, 3, 4, 5, 6, 7

For i As Integer = 1 To 7 Step 2
 Console.WriteLine(i)
Next
' outputs 1, 3, 5, 7

For i = 7 To 1 Step -2
 Console.WriteLine(i)
Next
' outputs 7, 5, 3, 1

© 2023 AQA 9 of 22

Definite (count controlled) iteration (continued)

FOR
(repeat the statements
the number of times
that there are characters
in a string, each time giving
Identifier the value of the
next character in the string).

For Each Identifier In StringExp
 ' indented statements here
Next

Dim length As Integer = 0
For Each ch In message
 length = length + 1
Next
Console.WriteLine(length)
' calculate the number of
' characters in message
' and output it

Dim reversed As String = ""
For Each ch In message
 reversed = ch + reversed
Next
Console.WriteLine(reversed)

' reversed is set to the
' reverse of message and
' output
' eg if message = "Hello"
' then reversed will become
' "olleH"

© 2023 AQA 10 of 22

Selection

IF-THEN-ENDIF (execute the
statements only if the Boolean
expression is True: see VB.NET
Boolean expressions above).

If BoolExp Then
 ' indented statements here
End If

Dim a As Integer = 1
If (a Mod 2) = 0 Then
 Console.WriteLine("even")
End If

IF-THEN-ELSE-ENDIF (execute
the statements following the THEN
if the Boolean expression is True,
otherwise execute the statements
following the ELSE).

If BoolExp Then
 ' indented statements here
Else
 ' indented statements here
End If

Dim a As Integer = 1
If (a Mod 2) = 0 Then
 Console.WriteLine("even")
Else
 Console.WriteLine("odd")
End If

NESTED IF-THEN-ELSE ENDIF
(use nested versions of the above
to create more complex
conditions).

Note that IF statements can be
nested inside the THEN part, the
ELSE part or both.

If BoolExp Then
 ' indented statements here
Else
 If BoolExp Then
 ' indented statements here
 Else
 ' indented statements here
 End If
End If

a = 1
If (a Mod 4) = 0 Then
 Console.WriteLine("multiple of 4")
Else
 If (a Mod 4) = 1 Then
 Console.WriteLine("remainder 1")
 Else
 If (a Mod 4) = 2 Then
 Console.WriteLine("remainder 2")
 Else
 Console.WriteLine("remainder 3")
 End If
 End If
End If

© 2023 AQA 11 of 22

Selection (continued)

IF-THEN-ELSE IF ENDIF
(removes the need for multiple
indentation levels).

If BoolExp Then
 ' indented statements here
ElseIf BoolExp Then
 ' indented statements here
 ' possibly more ElseIfs
Else
 ' indented statements here
End If

Dim a As Integer = 1
If (a Mod 4) = 0 Then
 Console.WriteLine("multiple of 4")
ElseIf (a Mod 4) = 1 Then
 Console.WriteLine("remainder of 1")
ElseIf (a Mod 4) = 2 Then
 Console.WriteLine("remainder of 2")
Else
 Console.WriteLine("remainder of 3")
End If

© 2023 AQA 12 of 22

Arrays

Declaration

Dim Identifier(IntExp) As DataType
' IntExp is the highest value element
' that can be accessed. Since the first
' element is element 0 there are
' IntExp + 1 elements in the array

Dim Identifier() As DataType = {value, …}
' In this form there are the number of
' elements in the array that there are in
' {value, …}

Dim primes(5) As Integer
' Has 6 elements, primes(0) to primes(5)

Dim evens() As Integer = {2, 4, 6, 8, 10}
' Has 5 elements, evens(0) to evens(4)

Dim names() = {"John", "Paul", "George"}
' If the type of the elements is clear
' then As DataType can be omitted

Assignment Identifier = {Exp, … ,Exp}
primes = {2, 3, 5, 7, 11, 13, 17, 19}
' Note that primes will now have 8 elements
' primes(0) to primes(7)

Accessing an element
(indexing) Identifier(IntExp)

Console.WriteLine($"Only even prime is
{primes(0)}")

' prints "Only even prime is 2"

Updating an element Identifier(IntExp) = Exp

primes(5) = 17

' position 5 within the array now
' contains the value 17

© 2023 AQA 13 of 22

Arrays (continued)

Declaring a two-
dimensional array

Dim Indentifier(IntExp1, IntExp2) As DataType
Dim Identifier(,) As DataType = {{value, …}, …}

Dim board(7, 7) As String
' board has 64 elements each of which is
' a string. board(0, 0) to board(7, 7)

Dim game(,) As String = {{"O", " ", "X"},
 {"X", "O", " "},
 {"O", "X", "O"}}
' game has 9 elements, game(0, 0) to
' game(2, 2)

Dim prices(,) = {{2.56, 4.34},
 {11.96, 12.41}}
' As DataType omitted

Accessing an element in a
two-dimensional array Identifier(IntExp, IntExp)

Dim game(,) As String = {{"O", " ", "X"},
 {"X", "O", "?"},
 {"O", "!", "X"}}
Console.WriteLine($"Row 1 column 2:
{game(1, 2)}")

' prints "Row 2 Column 3: ?" as the
' third column (with index 1) of the
' second row (with index 2) in array is "?"

' Note that game(2, 1) would be "!" and
' that game(3, 1) would give an error
' since there is no fourth row

© 2023 AQA 14 of 22

Arrays (continued)

Updating an element in a
two- dimensional array Identifier(IntExp, IntExp) = Exp

game(1, 2) = "#"

' game is now
' {{"O", " ", "X"},
' {"X", "O", "#"},
' {"O", "!", "X"}}

Array length Identifier.Length

Dim evens() As Integer = {2, 4, 6, 8, 10}
evens.Length
' evaluates to 5 using example above

Dim board(7, 7) As String
board.Length
' evaluates to 64 using example above

Dim costs(4, 3) As Single
costs.GetLength(0)
' evaluates to 5 and
costs.GetLength(1)
'evaluates to 4

Further examples of array
lengths

Dim t(,) As Integer = {{1, 2}, {2, 4}, {3, 6}}

Console.WriteLine($"The entire array t contains {t.Length} items")
Console.WriteLine($"There are {t.GetLength(0)} sub arrays")
Console.WriteLine($"Each sub array contains {t.GetLength(1)} items")

' outputs:
' The entire array t contains 6 items
' There are 3 sub arrays
' Each sub array contains 2 items

© 2023 AQA 15 of 22

Arrays (continued)

FOR
(repeat the statements
the number of times
that there are elements in a
array, each time giving
Identifier the value of the
next element in the array).

For Each Identifier In Array
 ' indented statements here
Next

Dim a() As Integer = {15, 27, 19, 18}
Dim sum As Integer = 0
For Each age In a
 sum = sum + age
Next
Dim mean As Single = sum / a.Length
Console.WriteLine(mean)
' calculates the total of the ages
' held in the array and the mean
' age and then outputs the mean (19.75)

© 2023 AQA 16 of 22

Records

Record declaration (exam
questions will use this method to
declare and use records)

Structure RecordName
 Dim field1 As DataType
 Dim field2 As DataType
 …
 Sub New(param1 As DataType,
 param2 As DataType,
 …)
 Me.field1 = param1
 Me.field2 = param2
 …
 End Sub
End Structure

' The name of the structure
' will start with a capital letter.

Structure Car
 Dim make As String
 Dim model As String
 Dim reg As String

 Sub New(mk As String,
 md As String,
 rg As String)
 Me.make = mk
 Me.model = md
 Me.reg = rg
 End Sub
End Structure

Variable instantiation
Dim varName As New
StructureType(value, …)

Dim myCar As New Car("Ford",
 "Focus",
 "EF56 ZFG")

Assigning a value to a field in a
record varName.field = Exp

 myCar.model = "Fiesta"

 ' The model field of the myCar
 ' record is assigned the value "Fiesta".

Accessing values of fields within
records varName.field

Console.WriteLine(myCar.model)

' Outputs the value stored in the
' model field of the myCar record

© 2023 AQA 17 of 22

Subroutines

Note: subroutines that are defined using the keyword Sub are procedures, while those that are defined using the keyword Function are functions and use
the Return statement to return a value.

Subroutine definition

Sub Identifier(parameter As Type, …)
 ' indented statements here
End Sub

Function Identifier(parameter As Type)
As ReturnValueType
 ' indented statements here
 ' including at least one return
 ' statement
End Function

Sub showAdd(a As Integer, b As Integer)
 Dim result As Integer = a + b
 Console.WriteLine(result)
End Sub

Sub sayHi()
 Console.WriteLine("Hi")
End Sub

' Both of these subroutines are procedures

Subroutine return value Return Exp

Function add(a As Single, b As Single) As
Single
 Dim result As Single = a + b
 Return result
End Function

' This subroutine is a function

Calling subroutines

' Subroutines without a return value

Identifier(parameters)

' Subroutines with a return value

Identifier = Identifier(parameters)

' Subroutine without a return value
showAdd(2, 3)

' Subroutine with a return value
Dim n1, n2 As Single
Console.Write("First number? ")
n1 = Console.ReadLine()
Console.Write("Second number? ")
n2 = Console.ReadLine()
Dim answer As Single = add(n1, n2) * 6

© 2023 AQA 18 of 22

String handling

String length StringExp.Length "computer science".Length
' evaluates to 16 (includes space)

Position of a character StringExp.IndexOf(CharExp)

"computer science".IndexOf("m")
' evaluates to 2

Dim t As String = "Algorithms"
Dim s As Integer = t.IndexOf(" ")
' s will have the value -1 since
' t does not contain a space

Substring (the substring runs from
the character at the first IntExp,
starting at 0, for the number of
characters given by the second
IntExp).

StringExp.Substring(IntExp, IntExp)

Dim t As String = "Computer Programs"
Dim p As String = t.Substring(9, 8)

' prints the string "Programs"
' If there is only one number then the
' string from the position given to
' the end of the string is returned
Dim t As String = "Computers"
Console.WriteLine(t.Substring(3))
' prints "puters"

Accessing a single character in a
string (this treats a string as if it
were an array)

StringExp(IntExp)
Dim t As String = "Computers"
Console.WriteLine(t(2))
' prints "m"

Concatenation StringExp + StringExp

Console.WriteLine("C" + "S")
' prints the string "CS"

' Note that no space is automatically
' added between each string

© 2023 AQA 19 of 22

String and character conversion

Converting string to integer Convert.ToInt32(StringExp)
Convert.ToInt32("16")

' evaluates to the integer 16

Converting string to real Convert.ToSingle(StringExp)
Convert.ToSingle("16.3")

' evaluates to the single (real) 16.3

Converting integer to string Convert.ToString(IntExp)
Convert.ToString(16)

' evaluates to the string "16"

Converting real to string Convert.ToString(RealExp)
Convert.ToString(16.3)

' evaluates to the string "16.3"

Converting character to
character code Asc(CharExp)

Asc("a")

' evaluates to 97 using ASCII/Unicode

Converting character code to
character Chr(IntExp)

Chr(97)

' evaluates to "a" using ASCII/Unicode

© 2023 AQA 20 of 22

Input/output

User input

Console.ReadLine()

' If you need a prompt then use
' Console.Write(prompt) before
' using Console.ReadLine

Dim name As String = Console.ReadLine()
' Console.ReadLine() returns a string,
' so one of the conversion functions
' above must be used to convert the
' string to an integer (Convert.ToInt32)
' or a single (Convert.ToSingle) unless
' assigning the result to a variable with
' one of those types.

Console.Write("What is your name? ")
Dim name As String = Console.ReadLine()

Console.Write("How many cans? ")
Dim q As Integer = Console.ReadLine()
' Note no Convert.ToInt32

Console.Write("How much? ")
Dim price As Single = Console.ReadLine()
' Note no Convert.ToSingle

© 2023 AQA 21 of 22

Input/output (continued)

Output

Console.WriteLine(Exp)

Console.Write(Exp)
' Doesn't move to new line after
' outputting Exp

Dim a As Integer = 45;
Console.Write(a);
Dim g As Single = 23.45;
Console.Write(g);

' To output more than one thing, or to
' include text at the same time
' use $ strings, eg

Dim qty As Integer = 15;
Console.WriteLine($"Quantity {qty}");

' outputs the string "Quantity 15"

Console.WriteLine("Mary had ")
Console.WriteLine("a little lamb")
' will print the text over two lines, but

Console.Write("Mary had ")
Console.WriteLine("a little lamb")
' will print the text on the same line

Formatted outputs will be shown
using interpolated strings ($""
strings).

$"…{identifier}…{identifier}…"

Dim name = "BT"
Dim staff = 125000

Console.WriteLine($"{name} has {staff}
staff")

' outputs "BT has 125000 staff"

© 2023 AQA and its licensors. All rights reserved. 22 of 22

Random number generation

Random integer generation
(The first IntExp is inclusive,
the second IntExp is
exclusive.)

Dim Identifier As New Random()

Dim varName As Integer =
Identifier.Next(IntExp, IntExp)

Dim rGen As New Random()
Dim num1 As Integer = rGen.Next(3, 7)

' generates an integer between 3 and 6

