
Teaching guide: arithmetic operations in a
programming language
This resource will help with understanding Arithmetic operations in a programming
language. It supports teaching of Section 3.2.3 of our GCSE Computer Science
specification (8525). This resource focuses on the following learning outcomes:

 Evaluate expressions using numbers

 Recognise the difference between integer and real division.

Standard arithmetic operations

Students will be familiar with the most common numerical operations in programming

languages: addition, subtraction and multiplication are unchanged from the ways

learned in primary school. For example:

34 + 4 evaluates to 38

12 – 10 evaluates to 2, and

3 * 4 evaluates to 12

In the last example, instead of using the × symbol for multiplication (which can be

confused with the character 'x') programming languages normally use the * symbol

instead. In all other respects these three operations are the same as in normal

mathematics.

It is possible to build more complex expressions, for example:

3 + 54 – 7 evaluates to 50, and

2 * 3 * 4 evaluates to 24

Programming languages use their own version of BIDMAS (Brackets, Indices, Division,
Multiplication, Addition and Subtraction) to give the standard order of precedence in
arithmetic (the order in which parts of a complex expression are evaluated).

However, different programming languages have different rules and you should not
assume, for example, that division would be carried out before multiplication. The use of
brackets (parentheses) eliminates any ambiguity.

(3 + 4) * (4 – 2) clearly evaluates to 14

© AQA 2020 1 of 2

For division the / symbol is used instead of the ÷ symbol as the latter is not on a

standard keyboard. This denotes real division (meaning the value of the expression is

a real number), and so

5 / 2 evaluates to 2.5

12 / 4 evaluates to 3 (alternatively 3.0 - integers can be

considered as special kinds of real numbers,

but the opposite is not true; 4, an integer, is

the same number as the real 4.0. The real

number 4.3 has no integer equivalent

though.)

25 / 4 evaluates to 6.25

Integer division and remainders

There is another kind of division used in programming. Using the last example, we

would say that 25 divided by 4 gives 6 remainder 1. Using more formal language we

would say:

25 divided by 4 evaluates to the quotient 6 with a remainder of 1

There are two different operations being performed here:

1. the integer division operation (DIV) calculates the quotient and

2. the modulus operation (MOD) calculates the remainder.

So,

25 DIV 4 evaluates to 6

25 MOD 4 evaluates to 1

Both expressions result in an integer value.

In general, m MOD n will evaluate to an integer between 0 and n-1 where m and n are

any integer. Further examples are:

14 DIV 3 evaluates to 4, and

14 MOD 3 evaluates to 2

17 DIV 5 evaluates to 3, and

17 MOD 5 evaluates to 2

There are many applications where the modulus operator is useful, such as working

out if a number is odd or even.

If you divide any integer by 2 it will result in a remainder of 0 if it is an even number and

a remainder of 1 if it is an odd number – this is a quick way to check a number’s

parity (odd or even).

Another example is putting people into groups. If every student in a class is given a

number between 1 and 30 and they need to be in four groups you could ask them all to

evaluate their number modulo 4 and they would each have the value 0, 1, 2 or 3.

 © AQA and its licensors. All rights reserved 2 of 2

