
Teaching Guide: data structures (arrays)

This resource will help with understanding data structures and the use of arrays. It
supports Section 3.2.6 of our GCSE Computer Science specification (8525).

Data structures

Data structures allow programmers to store together related data – the only alternative
is to use a large number of variables. The following examples show how arrays can be
used to store separate data items using one identifier and an index.

Example 1: Flipping a coin

When you flip a normal coin, it can either land as heads or tails. If you flip it often
enough, the number of times you get a head and the number of times you get a tail will
probably be similar. If we wanted to check this with a coin, we might flip it 6 times and
record the result each time (although instead of using ‘heads’ and ‘tails’ we will use a

Boolean interpretation: True for heads and False for tails). A program might look like

this:

flip1 ← True

flip2 ← False

flip3 ← False

flip4 ← True

flip5 ← True

flip6 ← True

If we wanted to use these variables to find the number of times a coin was a head, a
program something like this could help:

number_of_heads ← 0

IF flip1 THEN # flip1 is equivalent to flip1 = True

 number_of_heads ← number_of_heads + 1

ENDIF

IF flip2 THEN

 number_of_heads ← number_of_heads + 1

ENDIF

IF flip3 THEN

 number_of_heads ← number_of_heads + 1

ENDIF

and so on until…

IF flip6 THEN

 number_of_heads ← number_of_heads + 1

ENDIF

(You might expect the first Boolean expression to be flip1 = True but if flip1 is

False then the statement flip1 = True also evaluates to False, whereas if

flip1 is True then the statement flip1 = True also evaluates to True (because

True is equal to True)).

© AQA 2020 1 of 6

There are several problems with this approach:

 the large amount of code needed for something quite simple

 the need for the programmer to keep track of many very similar variables

when they are developing their program

 the fact that if the conditions for the program change (for instance running 30

tests instead of 6) the program will have to be substantially rewritten.

To overcome this, programmers use array data structures. A simple variable is a name
that refers to a location in memory where its value is stored; while an array variable
instead refers to the start of a block of memory locations.

We can create an array in a very similar way to declaring a variable but the retrieval,
assignment and updating of values uses new syntax.

This is our six coin flips rewritten in an array, called coin_flips:

coin_flips ← [True, False, False, True, True, True]

Getting to the values in the array is straight forward, we use the name of the array
followed by the location of the value in the array. For example, the first element in the

array (the True just after the [symbol (because array elements are read from left to

right) is accessed using this syntax:

coin_flips[0]

Note that the first element is at position 0 in the array. Some languages start at position

1 but unless stated otherwise in an exam paper you may assume that the first element

of the array is 'at' location 0.

The second element is accessed in the same way:

coin_flips[1]

and so on until the last (sixth) element is accessed using:

coin_flips[5]

Array syntax varies (slightly) across languages as does the name of the structure (for
example Python’s lists, although not completely identical to arrays, can be used for our
purposes in similar ways).

To find out the number of elements in the array we use the LEN subroutine:

LEN(coin_flips)

which returns the length of the array called coin_flips in this case the value 6, and

so another way to access the last element in the array is to replace the value 5 with the

value of the expression LEN(coin_flips) - 1 (remember the - 1 is because

the first element is at location 0):

coin_flips[LEN(coin_flips) - 1]

If we wanted to change the first element from True to False then we use the

assignment arrow familiar from assigning values to variables:

coin_flips[0] ← False

and the array would now be:

[False, False, False, True, True, True]

© AQA 2020 2 of 6

Each element in the array can be thought of as an individual variable: it can be
assigned a value, accessed and updated in the same way, but instead of having its own
individual identifier it instead has a combination of the array identifier and an integer
location (known as an index).

Example 2: Swimmers

The following example uses the race times of the top four finalists in the London 2012
Olympics Men’s 50m Freestyle swimming event and again shows the limitations of
using individual variables instead of an array for data that naturally belongs in a group:

Finalists Heats
Semi-
finals

Final

C. Cielo Filho 21.80 21.54 21.59

B. Fratus 21.82 21.63 21.61

C. Jones 21.95 21.54 21.54

F. Manaudou 22.09 21.80 21.34

There are twelve distinct real number values in the table that could be recorded in a
program using variables:

filho_heats ← 21.80

fratus_heats ← 21.82

jones_heats ← 21.95

manaudou_heats ← 22.09

filho_semis ← 21.54

fratus_semis ← 21.63

jones_semis ← 21.54

manaudou_semis ← 21.80

filho_final ← 21.59

fratus_final ← 21.61

jones_final ← 21.54

manaudou_final ← 21.34

This data can be used to answer questions such as:

 was the fastest swimmer in the heats also the fastest in the final?

 what was B. Fratus’s slowest time?

 did anyone get slower between the heats, the semi-finals and the final?

For all of these questions, it is easier to find the answer using the data presented in the
table rather than as a list of variables because it is easier to find or interpret data when
it’s presented in an ordered way. In addition to being able to look at the data more
easily, it is also easier to add another swimmer to the table than it is to write out three
more variables and give each one the respective value. It is also easier to program with
ordered data because instead of treating every item of data individually we can refer to
the group to which it belongs.

We can view the table another way that leads to how this is represented in code. Rather
than include the column headings we use the fact that the first column in the table after
the swimmer's name will be the heats time, the second column will be the semi-final
time and the third column will be the final time. The revised table looks like this:

C. Cielo Filho 21.80 21.54 21.59

B. Fratus 21.82 21.63 21.61

C. Jones 21.95 21.54 21.54

F. Manaudou 22.09 21.80 21.34

© AQA 2020 3 of 6

Finally, instead of the swimmers’ names we will use a descriptive variable identifier
instead. The table now looks like this:

21.80 21.54 21.59

times_filho 21.80 21.54 21.59

times_fratus 21.82 21.63 21.61

times_jones 21.95 21.54 21.54

times_manaudou 22.09 21.80 21.34

The 12 separate variables have now been replaced with four different arrays that each
hold three different values. The pseudo-code to create this is:

times_filho ← [21.80, 21.54, 21.59]

times_fratus ← [21.82, 21.63, 21.61]

times_jones ← [21.95, 21.54, 21.54]

times_manaudou ← [22.09, 21.80, 21.34]

If we wanted to write an expression to find out the final time of F. Manaudou from our
data structures we would use the name of the array and the index of the required value
within it; the final time is the third element of data within the structure and so the

expression would be (remember the first item is at index 0, the second at index 1 and

the third at index 2):

times_manaudou[2]

This is still not an ideal way to represent this information since:

 it needs the knowledge that the first element represents the heats, the second
element the semi-finals and the third the final, knowledge that won't be obvious to
everyone reading the program

 the data is still spread out over four separate arrays which makes comparison
between the swimmers awkward as the array identifiers all need to be known

 adding another swimmer is difficult since a new array variable must be created.

A further improved solution will be given at the end of the section in the 2-dimensional
arrays resource on our website.

© AQA 2020 4 of 6

Arrays and FOR-loops

We can now create arrays, assign values to their elements and access those elements. By
combining these techniques with loops we can write programs that allow us to deal with the
array as a single entity instead of all the elements separately.

To see how this works take a look at this code to work out the total of the ages stored in an

array called ages:

ages ← [25, 23, 28, 22]

total_age ← ages[0] + ages[1] + ages[2] + ages[3]

The long expression (ages[0] + ages[1] + …) involves a repetitive pattern and we can

use a loop to simplify it. The second line of code above is identical to initialising total_age

to the value 0 and then adding to this all the values in the array ages in turn. That is:

ages ← [25, 23, 28, 22]

total_age ← 0

total_age ← total_age + ages[0]

total_age ← total_age + ages[1]

total_age ← total_age + ages[2]

total_age ← total_age + ages[3]

Displaying it in this way makes it easy to see the repeating pattern in the code where the

difference in the five statements is the array index which is an integer that starts at 0 and

increases by 1 until it reaches 3.

The types of loop that are covered in the Teaching Guide – programming concepts (iteration)
are condition-controlled (WHILE and REPEAT-UNTIL), which repeat for an unknown number

of times while or until a Boolean condition is met, and count-controlled (FOR) which repeats for

a specified number of times. We know how long the ages array (and so how many times we

need to fo through the loop) so a FOR loop is the obvious choice in this situation. The code

can be rewritten as:

ages ← [25, 23, 28, 22]

total_age ← 0

FOR i ← 0 TO 3

 total_age ← total_age + ages[i]

ENDFOR

There is a final amendment we can make to this code to make it more general: currently this
works because there are exactly four elements in the array, but if we change the array to
include another element then we will also have to change the

FOR i ← 0 TO 3

to this

FOR i ← 0 TO 4

© AQA 2020 5 of 6

Previously we mentioned the LEN subroutine that returns the number of elements in an array.

The number that appears after the TO in our FOR loop is always one less than this value

(because our array starts indexing at 0) so a final rewriting of the program now works

regardless of how many values there are in ages:

ages ← [25, 23, 28, 22]

total_age ← 0

FOR i ← 0 TO LEN(ages) - 1

 total_age ← total_ages + ages[i]

ENDFOR

To calculate the mean (average) of the ages then we extend the last program by one line
(note that total_age is divided by LEN(ages) instead of the value 4 to ensure that this

program still works if the size of the array changes:

ages ← [25, 23, 28, 22]

total_age ← 0

FOR i ← 0 TO LEN(ages)-1

 total_age ← total_age + ages[i]

ENDFOR

mean ← total_age / LEN(ages)

To modify the program to find the oldest age in our array then we need to think more carefully about

the solution. In structured English we could:

1. assume that the first age in the array is the oldest

2. compare the oldest with the next element in the array

 if the next element is greater then set oldest to be this element

3. repeat step 2 for every element in the array

Step 3 involves iterating over (almost) every element in our array so we should be thinking

about a FOR loop. However, step 1 happens outside the loop and so our FOR loop should

start at the next element’s index which will be 1. The program then looks like this:

oldest ← ages[0]

FOR i ← 1 TO LEN(ages) - 1

 IF ages[i] > oldest THEN

oldest ← ages[i]

 ENDIF

ENDFOR

Alternatively, since every age must be positive, we could initialize oldest to -1, then iterate

over all the elements in the array (what initial value would you use for a variable youngest if

you wanted to find the youngest swimmer?):

oldest ← -1

FOR i ← 0 TO LEN(ages) - 1

 IF ages[i] > oldest THEN

oldest ← ages[i]

 ENDIF

ENDFOR

This second version does the same thing as the first but means that anyone reading the first
doesn't think 'Why does it start at the second element in the array?'

In the first version what would happen if the FOR loop started at 0 rather than 1?

© AQA and its licensors. All rights reserved 6 of 6

