

© 2023 AQA 1 of 8

Teaching guide: Data structures (records)
This resource will help with understanding data structures and the use of records. It supports
Section 3.2.6 of our GCSE Computer Science (8525) specification. The resource is designed to
address the following learning outcomes:

• construct data structures for use with specific problems

• know how to create, retrieve and update data in records

Complex data types
Arrays are normally used to store data of the same type – in the three examples used in the
‘Teaching guide – data structures (arrays)’ the elements in the arrays were all of the same
type: Boolean (coin flips), real (swimming times) and integer (ages). Some languages will
allow array-like structures to have mixed types although for this specification all the elements
in an array will have the same type.
What if you want to store items of data that are related but have different types?
A record is a data type that is built up of other items of data (each of which of course has its
own type). For example, the following information could be associated with works of art:

• title (of type string)
• artist (of type string)
• year it was created (of type integer)
• on public display? (of type Boolean)

Having to create four separate variables for every artwork would go back to the problems
in the ‘Teaching guide – data structures (arrays)’ that were overcome with arrays but,
because the data types that comprise this information differ, using arrays is not a
solution. Records are a way to aggregate (put together) different items of data (called
fields). The syntax we will use is this
RECORD Record_identifier
 field1 : <data type>
 field2 : <data type>
 …
ENDRECORD

So, a record to hold the details of the latest artwork a gallery has acquired
could be defined like this:
RECORD Artwork
 title : String
 artist : String
 year : Integer
 on_public_display : Boolean
ENDRECORD

© 2023 AQA 2 of 8

The way that the data within these records is accessed differs from the technique
used with arrays because the definition of a record uses names and not indices to
identify the data located within it.
To declare a new variable of this new type we use the following syntax:
variableName ← Record_identifier(value1, value2, …)

So for example
TheScream ← Artwork('The Scream', 'Munch', 1893, True)

and the name of the artist for The Scream could be output by executing:

OUTPUT TheScream.artist

Once created a single field of a record can be updated independently of the rest. For
example, if The Scream (the painting) were suddenly taken off public display then the
on_public_display field of TheScream (the record) should be set to False :

TheScream.on_public_display ← False

Records to hold the details of two more artworks could be defined in exactly the same
way:
TheThinker ← Artwork('The Thinker, 'Rodin', 1901, True)

and:
SeascapeFolkestone ← Artwork('Seascape Folkestone', 'Turner',
 1845, True)

If you wanted to write the code to find out if The Thinker was created before Seascape
Folkestone then you could use the year fields of both of these records:

OUTPUT TheThinker.title
IF TheThinker.year < SeascapeFolkestone.year THEN
 OUTPUT ꞌis older thanꞌ
ELSE
 OUTPUT ꞌis not older thanꞌ
ENDIF
OUTPUT SeascapeFolkestone.title

It is helpful to think of every item of data within a record as a separate variable since they can
each be accessed and updated in the same way but the identifier syntax
(Record_identifier.field_identifier) is different.

You could put all three of these records together in an array (although these records
contain different types of data within them, all works of art have the same record
type):

© 2023 AQA 3 of 8

art_collection ← [TheScream, TheThinker, SeascapeFolkestone]

on_display ← 0
FOR i ← 0 TO LEN(art_collection) – 1
 IF art_collection[i].on_public_display THEN
 On_display ← on_display + 1
 ENDIF
ENDFOR
OUTPUT on_display, ' works of art on public display'

Accessing records within an array looks complex until it is broken down into the array
index used to access one record within the array and then the field name to access the
field within the record.
As another example changing the title of the painting Seascape Folkestone to the more
correct Seascape, Folkestone we would need to access the title field of the
SeascapeFolkestone record which is the third element of the array art_collection
(this means its index is 2).

art_collection[2].title ← 'Seascape, Folkestone'

More on this in ‘Teaching guide - data structures (two dimensional data structures)’.

© 2023 AQA 4 of 8

Implementation in programming languages
All the pseudo-code syntax used in these Teaching guides is designed to be easily
implemented in real programming languages. Records should not be confused with
classes (in Object Oriented Programming which is not on the 8525 specification) which
are also a way to aggregate not only data but also actions that can be performed with
that data (although in Python the simplest way to create a record is to use a class – see
the Python section below).

C#

A record type is defined with the keyword struct and this type is then used in a
variable declaration, eg
// This defines a structure type called Car and must be
// defined outside the main function
struct Car
{
 public string make;
 public string model;
 public double price;
 public int doors;

 public Car(string make, string model,
 double price, int doors)
 {
 this.make = make;
 this.model = model;
 this.price = price;
 this.doors = doors;
 }
}

The subroutine Car is called a constructor, and its name must be the same as the structure
name, ie Car in this case. It's also very important that the this. comes before the names of
the fields, otherwise the code will not work. In the line this.make = make the
this.make on the left hand side of the = refers to the make field of the Car record being
created, and the make on the right hand side refers to the parameter being passed to the
function when a record is created. You don't need to call the parameters to the Car
subroutine the same as the corresponding fields but it helps (and applies to all the
programming languages).

© 2023 AQA 5 of 8

// This code should go within the main function
// This defines a variable of type Car called myCar

Car myCar = new Car("Ford", "Focus", 1399.99, 5);

Console.WriteLine($"My car is a {myCar.make} {myCar.model}");
Console.WriteLine($"Price £{myCar.price} doors {myCar.doors}");

myCar.price = 1000.0;

Console.WriteLine($"My car is a {myCar.make} {myCar.model}");
Console.WriteLine($"Price £{myCar.price} doors {myCar.doors}");

© 2023 AQA 6 of 8

Python

Unlike C# and VB.NET Python has no direct support for records. Classes are usually
used for this:
class Car:
 def __init__(self, make, model, price, doors):
 self.make = make
 self.model = model
 self.price = price
 self.doors = doors

In Python the constructor is always called __init__ and its first parameter should always be
called self. As with C# it's very important that the self. comes before the names of the
fields, otherwise the code will not work. In the line self.make = make the self.make
on the left hand side of the = refers to the make field of the Car record being created, and the
make on the right hand side refers to the parameter being passed to the function when a
record is created.

myCar = Car("Ford", "Focus", 1399.99, 5)

print(f"My car is a {myCar.make} {myCar.model}")
print(f"Price £{myCar.price} doors {myCar.doors}")

myCar.price = 1000.0

print(f"My car is a {myCar.make} {myCar.model}")

print(f"Price £{myCar.price} doors {myCar.doors}")

From Python 3.7 onwards students may use namespaces or dataclasses as the
following example shows (the following examples are taken from a discussion on the
Computing At School Community which unfortunately is no longer available on the CAS
site):
import types

car = types.SimpleNamespace()

car.make = "Ford"
car.model = "Focus"
car.price = 1000.0
car.doors = 5

print(f"{car.make}, {car.model}, {car.price}, {car.doors}")

© 2023 AQA 7 of 8

or

from dataclasses import dataclass

@dataclass
class Car:
 make: str = "" # Initialising variables is not

essential but the type hints are
 model: str = ""
 price: float = 0.0
 doors: int = 0

car = Car()

car.make = "Ford"
car.model = "Galaxy"
car.price = 12000.0
car.no_of_doors = 5

print(f"{car.make}, {car.model}, {car.price}, {car.doors}")

© 2023 AQA and its licensors. All rights reserved. 8 of 8

VB.Net
In a similar way to C# the structure type Car is defined first (outside your Main subroutine),
and then used in a Dim statement to declare a variable:

Structure Car
 Dim make As String
 Dim model As String
 Dim price As Single
 Dim doors As Integer

 Sub New(make As String, model As String,
 price As Double, doors As Integer)
 Me.make = make
 Me.model = model
 Me.price = price
 Me.doors = doors
 End Sub

End Structure

For VB.Net the constructor is always called New. As with the other two languages it's very
important that the Me. comes before the names of the fields, otherwise the code will not work.
In the line Me.make = make the Me.make on the left hand side of the = refers to the
make field of the Car record being created, and the make on the right hand side refers to the
parameter being passed to the function when a record is created.

' This defines a variable of type Car called myCar
Dim myCar As Car

myCar = New Car("Ford", "Focus", 1399.99, 5)

Console.WriteLine($"My car is a {myCar.make} {myCar.model}")

Console.WriteLine($"Price £{myCar.price}, doors
{myCar.doors}")

