
Teaching guide: data types 
This resource will help with understanding data types. It supports Section 3.2.1 of our 
current GCSE Computer Science specification (8525). The guide is designed to address 
the following learning outcomes: 

 Recognise fundamental types in programming.

 Relate values to their types.

 Derive the type from an expression.

Basic types 

Programming is fundamentally concerned with taking data and doing something with it. 

It is a good ambition to have programs to process data as quickly and safely as 

possible. To help in this, data can be put into different types or categories. 

The basic types of data found in most programming languages are: 

 Integer (whole number both positive or negative)

 Real (any number that can be found on the number line) – real number is the

mathematical term, in many programming languages real numbers have

cryptic names like float and double

 Boolean (only two values either True or False)

 Character (a symbol such as the letter 'a')

A character is a symbol and not a value. For example, the integer may be 14 but in terms 

of characters it is the symbol '1' followed by the symbol '4'. It is important to 

recognise this difference when writing code, to avoid the situation when the code tries to 

add 1 to a character and not 1 to an integer – in some languages this will crash your 

program, in other languages it might produce results very different to what you intended. 

It is sometimes common to have a sequence of characters treated as a single item of 

data and so there is a further basic data type: 

 String (a series of characters, e.g. 'cup' or '1 metre')

In Python characters can be thought of as strings made up of one symbol. 

© AQA 2020 1 of 2



Values 

All values in a computer program have a type. Sometimes this is immediately obvious, 

for example: 

 The value 43 has the type integer

 The value False has the type Boolean

 The value 'Chapter 1' has the type string

Sometimes it is necessary to evaluate an expression to find out its type. Evaluating 
means computing the expression until a final value is reached and you can go no 

further. For example, (4 + 6) ÷ 5 firstly evaluates to 10 ÷ 5, which in turn 

evaluates to the final value 2, which has the type integer. 

 43 ÷ 4 evaluates to 10.75 which has the type real

 The length of the string 'Chapter 1' evaluates to 9 which has the type

integer (don’t forget to include the space character)

 (3 - 2) ≥ 0 is an expression about integers but it has the value True

and so the whole expression has the type Boolean

It is an important skill in programming to be able to evaluate expressions and recognise 

the type of the value. 

Date and time 

Data types such as integer and Boolean are treated universally across programming 

languages: understanding how to use integers in Python then using them in, for instance, 

C# and VB.Net will not prove difficult. Some more complex data types do differ in their 

implementation among different languages, an example is the storage of dates and 

times. 

Most languages can store calendar dates and times but the way that they do this 

varies greatly. A further complexity is the way different cultures and countries record 

dates. For example, the date 13 April 2015 would be written as 13/04/15 in the UK and 

04/13/15 in the USA. 

Both of these examples share the Gregorian calendar but this is by no means the only 

yearly calendar system in the world – the Thai solar calendar starts counting its years 

using the Buddhist era which is 543 years earlier than the Gregorian calendar, so 2015 

AD would be 2558 BE. Time is also relative to the time zone the user is in (and 

whether that area has daylight saving) – 1am in Bangkok could be 6pm of the previous 

day in London. 

Computers solve this using a system time to count how many seconds (or milliseconds, 

microseconds or other unit of time) have passed since a commonly agreed point in time. 

This is then converted into the appropriate time and date format for the computer 

application or user. 

© AQA and its licensors. All rights reserved 2 of 2




