
Teaching guide: Data validation and
authentication
This resource will help with understanding robust and secure programming through

the data validation and authentication elements. It supports elements of Section

3.2.11 of our GCSE Computer Science specification (8525). The guide is designed to

address the following learning aims:

 Recognise the inherent unreliability of data entered by a user.

 Investigate ways to validate data using code.

A good rule of thumb when writing programs that involve user input is to always

assume that the user will make mistakes and write your programs accordingly. By

way of an example let’s look at a guessing game. An instance of this game could

look like this:

> Enter the number to be guessed 36

> Enter a guess between 1 and 100 fifty

$$$ Program crashed $$$

The user hasn’t necessarily done anything wrong – they’ve entered the string

'fifty' as their guess, but because our computer program was expecting a string

that could be converted to an integer, and because the string 'fifty' cannot be

directly converted into an integer it caused the entire program to crash.

Different types of validation

In using a program, some users will make mistakes, and crashing the program every
time they do will be frustrating. Code can be written that validates the user’s input

before carrying on. Validation does not mean that the user's input is always entered

correctly (for example they may enter an incorrect combination of username and

password), but it means that the format of their input is correct. A complete list of the

necessary validation for our user’s guess would be:

 minimum length (they must enter something: this is called a presence check)

 type (the input should be able to be converted to an integer)

 range (the integer representation of their input should be between 1 and 100).

© AQA 2020 1 of 4

The actions that result from the input not passing one or more of these validation
attempts should be to prompt the user to enter another guess and, if we were being

helpful, to give a message that explains why their input wasn’t valid.

One possible high-level plan for this is:

1. user enters a guess

2. if the length of this guess is zero then

a. output an error message

b. go to step 1

3. convert the input to an integer

4. if this causes an error

a. ‘catch’ the error

b. output an error message

c. go to step 1

5. if the integer is not between 1 and 100

a. output an error message

b. go to step 1

In step 4a the error that would be caused by converting to an integer is ‘caught’.

This means that the program does not crash and when an error is found it is caught

by a safety net around that part of code. We can use the following syntax in our

pseudo-code to represent this safety net:

TRY

do some code that might cause an error

CATCH

if an error is found then do this code

ENDTRY

An example of TRY-CATCH when attempting to convert a string to an integer is:

string_input ← USERINPUT

TRY

int_input ← STRING_TO_INT(string_input)

CATCH

OUTPUT 'input could not be converted to integer'

ENDTRY

© AQA 2020 2 of 4

Coding validation routines

The entire validation procedure above should be written to continue to loop until the

data is fully valid and, as we don’t know how long this will be, apart from the fact it

must happen at least once, then a REPEAT-UNTIL or WHILE-ENDWHILE loop

would seem appropriate.

valid ← False
OUTPUT 'Enter a guess between 1 and 100'

REPEAT

guess_as_string ← USERINPUT
 # presence check

 IF LEN(guess_as_string) = 0 THEN

OUTPUT 'You have not entered anything'

 ELSE

TRY

 # type check (will go straight to CATCH if it

 # fails)

guess ← STRING_TO_INT(guess_as_string)
 # range check

 IF guess < 1 OR guess > 100 THEN

 OUTPUT 'Must be between 1 and 100'

 ELSE

 # if all checks passed then input is valid

valid ← True
 ENDIF

CATCH

OUTPUT 'Must enter an integer (e.g. 42)'

ENDTRY

 ENDIF

UNTIL valid

Taking this a step further

The code below could be used to get user input between a lower and upper bound:

SUBROUTINE get_input(lower, upper)

 OUTPUT 'Enter a number between', lower, 'and', upper

number ← USERINPUT
 RETURN number

ENDSUBROUTINE

© AQA 2020 3 of 4

We can combine our knowledge of validation and subroutines to amend this code so

the subroutine will not return a value unless it is an integer within the correct range

(this example uses a WHILE loop instead of REPEAT-UNTIL for variance):

SUBROUTINE get_input(lower, upper)

 OUTPUT 'Enter a number between', lower, 'and', upper

 number_as_string ← USERINPUT

 # continue to loop until number is returned

 WHILE True

TRY

number ← STRING_TO_INT(number_as_string)

IF number < lower OR number > upper THEN

OUTPUT 'Number not within bounds'

ELSE

RETURN number

ENDIF

CATCH

 OUTPUT 'Not an integer'

ENDTRY

 ENDWHILE

ENDSUBROUTINE

Data validation code is often very repetitive, so becoming adept at putting this code

inside subroutines that can be reused will speed up the development of the code as

well as making the code more structured, shorter and less likely to contain errors.

Authentication routines

The use of usernames and their associated passwords is a very common method

of authentication. Using the techniques so far we could ask a user to enter their

username followed by their password and compare what is entered against the list

of stored usernames and passwords.

As an overview:

1. User enters a username

2. User enters a password

3. Loop over every stored username-password combination

a. if the username entered matches a stored username then check if the
corresponding passwords match

b. if the corresponding passwords also match then allow the user to
progress

There are many finer details that would be involved in implementing this such as:

 validating the user input to make sure they have entered a valid username

and a valid password, eg a presence check to make sure they have entered

something for both

 ensuring that the loop terminates either when no further usernames are

available or when a successful username-password match has been found.

© AQA and its licensors. All rights reserved 4 of 4

