Teaching guide: Programming concepts (Iteration)

This resource will help with understanding iteration in programming concepts. It supports Section 3.2.2 of our GCSE Computer Science specification. We have designed this resource to address the following learning aims:

- understand why we use iteration in programs
- beableto follow condition-controlled loops using REPEAT-UNTIL and WHILE
- know how to rewrite a REPEAT-UNTIL loop using a WHILE loop
- be able to follow and use the count-controlled FOR loop
- be able to nest loops within each other.

REPEAT-UNTIL loops

The following guessing game introduces the use of REPEAT-UNTIL loops:

1. The setter thinks of a number between 1 and 100
2. The player has a guess at this number
3. Is this guess the same as the setter's number?
a. YES then the game ends
b. NO then the setter tells the player if it is too high or too low
4. Go back to step 2

Variables can now be introduced at steps 1 and 2 :

1. setters_number \leftarrow USERINPUT
2. guess \leftarrow USERINPUT
3. Is this guess the same as the setter's number?
a. YES then the game ends
b. NO then setter tells the player if it is too high or too low
4. Go back to step 2

A Boolean expression can also be introduced to replace line 3 and parts a and b reworded, so we end up with:

1. setters_number \leftarrow USERINPUT
2. guess \leftarrow USERINPUT
3. setters_number = guess?
a. True then the game ends
b. False then the setter tells the player if it is too high or too low
4. Go back to step 2

A problem now occurs because at step 4 we must loop back to step 2 and start executing statements starting with step 2. The technique of looping back to a previous place in an algorithm is incredibly common and there are a number of different ways to accomplish it: this section will cover: REPEAT-UNTIL.

The use of REPEAT-UNTIL is common in everyday English, for example:

- 'repeat after me until you understand'
- 'repeat the back flip until you can do it'
- 'repeat your times tables until you know them off by heart'.

All of these share the properties that you will be doing the action at least once and thereafter for an unknown number of times until some condition is True.

The aim in the algorithm is exactly this: enter a guess at least once and repeat this until the guess is correct (which could be 6 more times, 10 more times, no more times etc). So the entire game can now be rewritten as this:

```
setters_number \leftarrow USERINPUT
```


REPEAT

guess \leftarrow USERINPUT
\# tell the player if it was too high or too low

```
UNTIL setters_number = guess
```

The logic for determining whether the guess was higher or lower than the setter's number has not been included yet and so the comment describes code that has not yet been written - this is addressed in the Teaching guide - Programming concepts (Selection).
This game could be extended to include a counter that increases after every guess so at the end of the game the algorithm tells the player how many guesses have been made.
We now know all the techniques to do this in our algorithm. We must:

- create an integer variable and assign it a starting value
- make sure this variable goes up by 1 after every guess
- output this variable once the correct guess has been made.

The code between the REPEAT and the UNTIL lines is known as the loop body: so for a REPEAT-UNTIL loop the code in the loop body is always executed at least once.

When the program starts the user has had no guesses and so the starting value should be 0 . This statement and the statement for the variable going up (or incrementing) can be added into our algorithm to get:

```
setters_number }\leftarrow USERINPU
num_of_guesses \leftarrow0
```


REPEAT

guess \leftarrow USERINPUT
num_of_guesses \leftarrow num_of_guesses +1
\# tell the player if it was too high or too low
UNTIL setters_number = guess
OUTPUT num_of_guesses
The last line in this program obviously outputs the number of guesses made.

WHILE loops

Another kind of iteration is the WHILE loop. Again, the use of WHILE is common in real life:

- 'while it is raining stay indoors'
- 'while you are younger than 18 you cannot drive'
- 'while you are less than 1 metre tall you are not allowed on a ride'

Each of these suggests that although you can or cannot do something at the moment, at some point in the future this will change.
WHILE differs from REPEAT-UNTIL because the Boolean condition occurs at the start of the loop. For example, if the first example above were written into a WHILE loop it could be written as:

```
is_it_raining \leftarrow USERINPUT
```

WHILE is_it_raining = 'yes'
OUTPUT 'stay indoors'
is_it_raining \leftarrow USERINPUT

ENDWHILE

OUTPUT 'go outdoors'
The condition is evaluated at the beginning of the loop and, if it is True, the code in the loop executes. The algorithm then loops back and executes the WHILE statement, evaluating the condition again. At the point where the Boolean condition evaluates to False the code in the loop is skipped and the algorithm executes from the line after the ENDWHILE.

In the game, while the guess is not the same as the setter's number the player has another go and this will continue until the guess is correct. So the Boolean expression in the game can be rephrased to setters_number \neq guess to get:

```
setters number \leftarrow USERINPUT
guess \leftarrow USERINPUT
```

WHILE setters_number \neq guess
\# tell the player whether it is too high or too low
guess \leftarrow USERINPUT

ENDWHILE

Logically this is no different from the game that used REPEAT-UNTIL as they will both do the same thing although the WHILE loop must have a guess made before the loop starts as well as within the loop.
The code between the WHILE and ENDWHILE lines, like that between the REPEAT and the UNTIL lines in the previous section, is the loop body: so for a WHILE loop the code in the loop body may never be executed (if the condition is Fal se when first evaluated).

A REPEAT-UNTIL loop can always be rewritten as a WHILE loop using this pattern:

REPEAT

\# block of code to be repeated
UNTIL the Boolean condition $=$ True
is equivalent to:

```
WHILE the Boolean condition = False
    # the same block of code to be repeated
```


ENDWHILE

but unless you can be certain that the WHILE loop's condition will not be True when the loop is first met you must have a copy of the REPEAT loop's body before the WHILE statement because otherwise it's possible that the WHILE loop's body is never executed..

Rewriting a WHILE Ioop as a REPEAT-UNTIL is sometimes possible using the 'opposite' pattern where the True Boolean condition in the WHILE becomes the False Boolean condition in the REPEAT-UNTIL although this will not always be possible and it may require use of selection as well which is covered in the next section.

WHILE or REPEAT-UNTIL?

It might look from this that a REPEAT-UNTIL is always a better choice than a WHILE loop because there is less code to write but remember that the code in the REPEATUNTIL loop will be executed at least once and this is not always desirable.

An algorithm to check the temperature of a fridge could use a thermometer to read the temperature and play a warning sound repeatedly until the temperature is below $4^{\circ} \mathrm{C}$.
As a WHILE loop this would be:

```
temp \leftarrow THERMOMETER_INPUT
WHILE temp \geq 4
    OUTPUT warning sound
    temp }\leftarrowTHERMOMETER_INPU
ENDWHILE
```

However if REPEAT-UNTIL had been used then the program would play a warning sound once even if the temperature was acceptable:

```
REPEAT
    OUTPUT warning sound
    temp \leftarrow THERMOMETER_INPUT
UNTIL temp < 4
```

Remember that It is always possible to rewrite a REPEAT-UNTIL loop as a WHILE loop and if the Python programming language is being used this has to be done because the Python language does not include REPEAT-UNTIL loops.

Count-controlled loops

The previous examples are loops that are controlled by a Boolean expression and are known as indefinite iteration because they can continue looping an indefinite number of times. In contrast to this a FOR loop iterates for a specified number of times.

Most languages have at least one form of FOR loop although their syntax may differ. Our version of a FOR loop will introduce a new integer variable that is given a value to start at and a value to stop at with the assumption that it will increase by one after every iteration of the loop body. For example, this short program will output the string 'hello' ten times:

```
FOR i \leftarrow 1 TO 10
    OUTPUT 'hello'
ENDFOR
```

For the first iteration of this loop the value of i will be 1 , through the next iteration it will be 2 and so on until it has the value 10 on the last iteration. This program does not use the variable i within the body of the loop and only uses it as a way to count how many iterations are made but we are free to use the variable within the FOR loop just as you would any other variable.

If you wanted to create an algorithm that outputs the 3 times table from 1×3 to 12×3 you could make good use of the variable in the FOR loop by studying the patternin the expressions. Withoutaloop, our algorithm would look something like this:

```
OUTPUT 1 * 3
OUTPUT 2 * 3
OUTPUT 3 * 3
# and so on for 4 * 3 to 11 * 3
OUTPUT 12 * 3
```

Every line of code in this algorithm is the same except for the integer immediately before the * operator. This integer starts at 1 and increases by 1 every time until it reaches 12 and so the algorithm could be rewritten using a FOR loop:

```
FOR i \leftarrow 1 TO 12
    OUTPUT i * 3
ENDFOR
```

This has the obvious advantage that it accomplishes the same as the previous algorithm but using significantly fewer lines of code. It is also easier to spot mistakes and easier to extend (such as changing this to the four times table instead).

Use of loops

Knowing when to use a loop is a skill that improves with practice, but you should definitely be thinking about using a loop if any of these are true:

- you see repeating patterns in the code
- you find yourself repeating lines or blocks of code
- you are copying and pasting code underneath or above itself

Sometimes knowing when to use a loop is less clear-cut. If you were asked to find out the sum of the positive integers up to and including 100 (i.e. $1+2+3+\ldots+99+100$) then you could write out a long arithmetic expression or you could use a FOR loop:

```
result }\leftarrow
FOR n \leftarrow 1 TO 100
    result \leftarrow result + n
ENDFOR
OUTPUT result
```


Nested iteration

Iteration is one of the three main components of the style of programming used in these guides, the others are sequence - quite simply the order in which your instructions are executed - and selection which will be covered in the next guide. Programmers use these simple building blocks to construct complex algorithms and one technique that can be used to do this is placing loops within each other.
Below is the three times table algorithm:

```
FOR i \leftarrow 1 TO 12
    OUTPUT i * 3
```


ENDFOR

How could this algorithm be extended so that instead of just printing the three times table, it prints all of the times tables from one to ten? First look at the pattern. To output the one times table you need to change it to:

```
FOR i \leftarrow 1 TO 12
    OUTPUT 1 * i
ENDFOR
```

then to output the two times table you need to change it to:

```
FOR i \leftarrow 1 TO 12
    OUTPUT 2 * i
ENDFOR
```

and so on up to and including the ten times table:

```
FOR i \leftarrow 1 TO 12
    OUTPUT 10 * i
ENDFOR
```

The only thing that changes in this program is the integer to the left of the * symbol which starts at 1 , ends at 10 and goes up by 1 every time. This is exactly the time when a FOR loop should be used - when the number of iterations is known (in this case 10).
So what about this implementation:

```
FOR i }\leftarrow1\mathrm{ TO 10
    FOR i \leftarrow 1 TO 12
        OUTPUT i * i
    ENDFOR
ENDFOR
```

There is a big problem here in the use of the variable i. In the line OUTPUT i \quad i it is not clear which i should be used - the i from the inner FOR loop or the i from the outer FOR loop?
In the C\# and VB. Net programming languages this will be shown as an error while in Python the program will run but both occurrences of i will refer to the most recent value that the program has assigned (in this case that from the inner FOR loop).
If our algorithm is to run as we want we will need to use another variable name in either one of our FOR loops. A corrected algorithm is:

```
FOR i \leftarrow 1 TO 10
    FOR j \leftarrow 1 TO 12
        OUTPUT j * i
    ENDFOR
ENDFOR
```

An even better example that achieves the same output but uses clearer variable identifiers would be:

```
FOR table \leftarrow 1 TO 10
    FOR multiplier \leftarrow 1 TO 12
        OUTPUT multiplier * table
    ENDFOR
```


ENDFOR

There are many conventions used in programming that allow your code to be easily read and understood. One such convention is the use of one-letter variable identifiers when the variable is used as a counter; these typically start at i, then j, k and so on as needed.

The way that the FOR loops are nested is important. To see why, we can first create a trace table of a shorter version of this algorithm that outputs the 1,2 and 3 times tables each up to five times:

```
FOR i }\leftarrow1\mathrm{ TO 3
    FOR j \leftarrow 1 TO 5
        OUTPUT j * i
    ENDFOR
ENDFOR
```

In our trace table for this algorithm, we will also include a column that shows the output at each iteration.

\mathbf{i}	\mathbf{j}	OUTPUT
1	1	1
	2	2
	3	3
	4	4
	5	5
2	1	2
	2	4
	3	6
	4	8
3	5	10
	2	3
	3	6
	4	9
	5	12

Now compare this with a similar algorithm in which the nesting of the FOR loops has been swapped:

```
FOR j \leftarrow 1 TO 5
    FOR i \leftarrow 1 TO 3
        OUTPUT j * i
    ENDFOR
ENDFOR
```

The trace table for this algorithm (again including the output) is:

\mathbf{j}	\mathbf{i}	OUTPUT
1	1	1
	2	2
2	3	3
	1	2
	2	4
3	3	6
	1	3
	2	6
	1	9
	2	4
	3	8
	2	12
	3	5
	10	

This algorithm still outputs times tables, but the first 3 of 5 different tables, instead of the first 5 of 3 different tables.

For another example that uses considerable nesting, consider a park bench with four places on it. Each place can only ever be empty or occupied by a person (no sharing, no sitting on laps, no lying over three spaces etc).
How many ways are there for this bench to accommodate people?
We could start by drawing some solutions to this problem:

Seat 4	Seat 3	Seat 2	Seat 1
			Occupied
		Occupied	
		Occupied	Occupied
\ldots	\ldots	\ldots	\ldots

and we could continue, but it looks like this is going to be quite a lengthy table so let's try to spot a pattern.

Every seat can be empty or occupied - that is two different states. To use a FOR loop to count how many states that would be for one seat we could write the following algorithm where 0 could represent empty and 1 could represent occupied:

```
count \leftarrow 0
```

FOR seat1 $\leftarrow 0$ TO 1

```
    count \leftarrow count + 1
```


ENDFOR

The next seat also has exactly two states, but for each one of its states, the previous seat can also be empty or occupied like so, ignoring the other two seats for the moment:

Seat 4	Seat 3	Seat 2	Seat 1
			Occupied
		Occupied	
		Occupied	Occupied

and so we could extend our algorithm to:

```
count \leftarrow 0
FOR seat2 \leftarrow 0 TO 1
    FOR seat1 \leftarrow 0 TO 1
        count \leftarrow count + 1
    ENDFOR
ENDFOR
```

Now seat 3 also has exactly two states, as does seat 4, and so our finished algorithm looks like this:

```
count \leftarrow 0
FOR seat4 \leftarrow 0 TO 1
    FOR seat3 \leftarrow 0 TO 1
        FOR seat2 \leftarrow 0 TO 1
                FOR seat1 \leftarrow 0 TO 1
                count \leftarrow count + 1
                ENDFOR
        ENDFOR
    ENDFOR
```


ENDFOR

When this algorithm is run the final value of count tells us how many different arrangements there are (the answer is 16). We could extend the algorithm slightly so that within the innermost nested FOR loop we output the values of seat4, seat3, seat2 and seat1 on one line, which would give us the complete set of arrangements.

Seat4	Seat3	Seat2	Seat1
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

All loops can be nested, not just FOR loops. If we look again at the guessing game using the REPEAT-UNTIL loop it is obvious that this game will run once and then stop, but what if we amend this so that it gives the user the option to play again or stop?
The algorithm itself needs to be repeated an unknown number of times (the players could decide to only play it once or they may choose to play it 10 times) but it will be played at least once.

Therefore, because it repeats an unknown number of times but happens at least once we could nest this algorithm inside a REPEAT-UNTIL loop:

REPEAT

```
setters_number }\leftarrow\mathrm{ USERINPUT
num_of_guesses }\leftarrow
```


REPEAT

guess \leftarrow USERINPUT
num_of_guesses \leftarrow num_of_guesses +1
\# tell the player if it was too high or too low
UNTIL setters_number = guess
OUTPUT num_of_guesses
play_again \leftarrow USERINPUT
UNTIL play_again = 'no'
The algorithm prompts the user to enter whether they would like to play again at the end of the game and will play another game if the user answers anything except the string ' no '.

So far FOR loops have been nested inside other FOR loops and REPEAT-UNTIL loops inside other REPEAT-UNTIL loops but any loop can be nested inside any other. The game could just as well have been nested within a WHILE loop with some small adjustments to ensure it happens at least once:

```
play_again \leftarrow 'yes'
WHILE play_again f 'no'
    setters_number }\leftarrow USERINPU
    num_of_guesses \leftarrow0
    REPEAT
        guess }\leftarrow USERINPU
        num_of_guesses \leftarrow num_of_guesses + 1
        # tell the player if it was too high or too low
    UNTIL setters_number = guess
    OUTPUT num_of_guesses
    play_again \leftarrow USERINPUT
```


ENDWHILE

Infinite loops

We have looked at two main types of iteration in this section: definite iteration (FOR loops) where the number of iterations is fixed/known in advance, and indefinite iteration (WHILE and REPEAT-UNTIL loops) where it is unknown how many times the loop will repeat.
When you create the condition for indefinite loops you need to be careful that the truthfulness of this condition will eventually change. For example, if you have a loop like this:
WHILE a < 5
you must ensure that at some point in your algorithm a is going to be greater than or equal to 5 , so that a < 5 becomes False. If this never happens then you will end up executing the loop body forever.
The following algorithm adds ten to a number until it reaches a certain point:
$\mathrm{n} \leftarrow 1$
WHILE $n \neq 30$
$\mathrm{n} \leftarrow \mathrm{n}+10$

ENDWHILE

The intention is for this loop to stop (or terminate) when the number n gets to 30 .

If you create a trace table to follow the execution we see that there is an error:

11
21
31
41
51

The trace table contains the first six values of n but would carry on forever because n is never exactly equal to 30 - an infinite loop.
If the intention of the programmer was to stop executing the loop before it got to a value greater than or equal to 30 then a corrected version could be:
$\mathrm{n} \leftarrow 1$

```
WHILE n < 30
```

$\mathrm{n} \leftarrow \mathrm{n}+10$

ENDWHILE

for which the trace table is:

\mathbf{n}
1
11
21
31

(Note that the final value of n is 31 and not 21 - the first and final value of n that makes the value of $n<30$ False.)

