
© AQA 2020 1 of 6

Teaching guide: Programming concepts
(Selection)
This resource will help with understanding the use of selection in programming
concepts. It supports elements of Section 3.2.2 of our GCSE Computer Science
specification (8525). The guide is designed to address the following learning outcomes:

 Understand how selection is used to structure flow through a program.

 Be able to use one branch and two branch selection (IF and IF-ELSE).

 Be aware of multiple branch selection (such as CASE) and realise its equivalence to

nested IF-ELSE statements.

Making choices

You are about to leave the house to walk to the train station and you look out of the window.
You might then make this reasonable choice:

 if it is raining, I’ll wear a coat.

This is an example of one branch selection: take an expression that can have a value of

either True or False (a Boolean expression) and based on the value of that expression

perform an action. Boolean expressions and selection are used all the time in real life:

if the road is clear I can safely cross it

 if I have enough money I can buy a computer

 if my music is too loud the neighbours will complain

 if the pan is hot I’ll burn myself when I pick it up.

It is impossible to live independently unless we make these reasoned decisions based on
whether something is true or not. (In real life, many things are neither exactly true nor false
– for example ‘it is raining’ is not absolute as it could be slightly damp, a bit drizzly or a
howling storm – however in computer programming we will deal only with expressions that
are either completely true or completely false.)

Programming with selection is even simpler than writing sentences about it. Applying this
to a guessing game where the player only has one go at guessing the number and if they
get it correct then they get a ‘well done’ message. We could write this algorithm as:

 setters_number ← USERINPUT

 guess ← USERINPUT

 IF setters_number = guess THEN

 OUTPUT ꞌWell done!ꞌ

 ENDIF

© AQA 2020 2 of 6

The message is only output if the Boolean condition setters_number = guess

evaluates to True.

The algorithm does not loop back in the same way as it would if a WHILE statement had

been used instead of an IF statement. Selection is about making a choice of what to

execute and, once it is executed, continuing with the remainder of the algorithm.

The guessing game algorithm doesn’t tell the player if they got the answer wrong. We

could use another technique called two-branch selection, which creates a fork in our

algorithm, to do that. If the value of a Boolean condition is True then the algorithm forks

one way, but if it is False it forks another (the Boolean expression is only evaluated once

to achieve this).

Using code, we could write this as:

 setters_number ← USERINPUT

 guess ← USERINPUT

 IF setters_number = guess THEN

OUTPUT ꞌWell done!ꞌ

 ELSE

OUTPUT ꞌBad luck!ꞌ

 ENDIF

If you return to a previous version of our game (discussed in the Programming concepts

(iteration) resource) that allows for multiple guesses, you can include selection to automate

the reply to whether the guess was too high or too low although we do need to be careful

here. You could write this algorithm:

Is the guess
correct?

Say 'Well
done!'

Say 'Bad
luck!'

© AQA 2020 3 of 6

 setters_number ← USERINPUT

 num_of_guesses ← 0

 REPEAT

 guess ← USERINPUT

 num_of_guesses ← num_of_guesses + 1

 IF guess < setters_number THEN

 OUTPUT ꞌGuess was too lowꞌ

 ELSE

 OUTPUT ꞌGuess was too highꞌ

 ENDIF

 UNTIL setters_number = guess

 OUTPUT num_of_guesses

This algorithm would work for all guesses that are either too high or too low but when the

correct answer is guessed it would still output 'Guess was too high'. In this instance

an IF-ELSE is the wrong decision and you need to use two IFs to check if the guess was

too low or too high. Using ELSE IF (introduced later in this section) would be an even

better choice.

 setters_number ← USERINPUT

 num_of_guesses ← 0

 REPEAT

 guess ← USERINPUT

 num_of_guesses ← num_of_guesses + 1

 IF guess < setters_number THEN

 OUTPUT ꞌGuess was too lowꞌ

 ENDIF

 IF guess > setters_number THEN

 OUTPUT ꞌGuess was too highꞌ

 ENDIF
 UNTIL setters_number = guess

 OUTPUT num_of_guesses

The general pattern for one branch selection is:

 IF Boolean expression THEN

 # do this if the Boolean expression is True

 ENDIF

The general pattern for two branch selection is:

 IF Boolean expression THEN

 # do this if the Boolean expression is True

 ELSE

 # do this if the Boolean expression is False

 ENDIF

© AQA 2020 4 of 6

Nested selection

Just as loops can be nested, so can selection statements. Take the example of animal
classification where you can evaluate Boolean expressions about an animal and if the result

is True the program takes one branch or if it is False another and then evaluates other

Boolean expressions until you are able to identify the animal.

Instead of covering all of the animal kingdom (which would require a significant number of
selection structures), we will consider a world in which the only animals are humans, lions,
eagles and goldfish. We want a Boolean expression that divides these four different
animals into two separate groups: humans and lions are the only two land animals so
answering the expression ‘is it a land animal’ divides the animals like so:

You can now use different Boolean expressions to divide lions and humans from each other
and also eagles and goldfish.

Could be a lion
or a human

It is a land
animal

Could be an
eagle or a
goldfish

© AQA 2020 5 of 6

The following algorithm implements part of the requirements above:

 OUTPUT ꞌis it a land animal?ꞌ

 answer ← USERINPUT

 IF answer = ꞌyesꞌ THEN

 OUTPUT ꞌdoes it walk on two legs?ꞌ

 answer ← USERINPUT

 IF answer = ꞌyesꞌ THEN

 OUTPUT ꞌhumanꞌ

 ELSE
 OUTPUT ꞌlionꞌ

 ENDIF

 ELSE

 OUTPUT ꞌdoes it fly?ꞌ

 answer ← USERINPUT

 IF answer = ꞌyesꞌ THEN

 OUTPUT ꞌeagleꞌ

 ELSE
 OUTPUT ꞌgoldfishꞌ

 ENDIF

 ENDIF

The outer IF-ELSE divides the animals into two groups, the inner IF-ELSEs further divide

them at which point it is clear what the animal is.

Sometimes you want algorithms to branch based on a choice of many values, not just two. For
example, this program outputs the name of the first four months based on their numerical
position in the year:

 month ← 3

 IF month = 1 THEN

 OUTPUT ꞌJanuaryꞌ

 ELSE IF month = 2 THEN

 OUTPUT ꞌFebruaryꞌ

 ELSE IF month = 3 THEN

 OUTPUT ꞌMarchꞌ

 ELSE IF month = 4 THEN

 OUTPUT ꞌAprilꞌ

 ELSE

 OUTPUT ꞌNot one of the first four monthsꞌ

 ENDIF

© AQA and its licensors. All rights reserved 6 of 6

Many languages also have structures that allow programmers to branch based on one of

many values or cases –often they use the keyword CASE or SWITCH. Logically this is no

different from using nested IF-ELSEs or (as in the second program) ELSE IF.

With the exception of subroutines, this is the last of the fundamental building blocks of
structured programming. If you look at any program written in Java, Pascal, Python,
VB.Net and so on there may well be many lines of code that still look very confusing, but you
will see that a large part of the code is comprised of variables, iteration and selection.

