
Teaching guide: random numbers
This resource will help with understanding random number generation in a programming
language. It supports Section 3.2.9 of our GCSE Computer Science specification (8525).
The guide is designed to address the following learning aims:

 Analyse situations where random number generation could be used in programs.

 Apply different forms of random number generation within programs.

Programs that run on computer systems are deterministic – with the same inputs they
produce exactly the same outputs every time. If they did not do this then it would be
impossible to write a correct program, so this is no bad thing.

However, it does limit the ability to create random events in programs, which are useful in
a wide range of circumstances. For example:

 shuffling a playlist

 modelling flipping a coin

 modelling throwing a die

 making computer games less predictable

 picking a name out of a group of students.

Randomness is easy to produce in the real world – spinning a wheel, rolling a die and so
on are millennia-old techniques but producing the same randomness in a computer
program is rather tricky.

In fact computers do not produce random numbers at all – they use complex
mathematical techniques to produce a series of numbers that may appear random but
are really only an approximation to randomness (called pseudo-random numbers).

However, it is very unlikely that this will have a noticeable impact on any of the programs

your students will write for this course. Fortunately, programming languages have

random number generation subroutines that simplify the process.

They fall into three broad categories:

1. generating a random integer between a lower and upper value.

2. generating a random real number between a lower and upper value, commonly

set as 0 and 1.

3. randomly choosing an element from a data structure.

Some languages support all three of these (and more) whereas other languages may just

support the first one or two. That said, only the first one or the second one are required to

create the other two because:

 a random real number can be produced from dividing one random integer by
another

 a random integer can be produced by rounding a random real and a random

real between any two numbers a and b can be produced by evaluating

a + (b – a) * r where r is a random real between 0 and 1

 a random element can be chosen from a data structure by using a random
integer as an index where the lower value is the first index of the structure and the
upper value is the final index.

© AQA 2020 1 of 2

The following example shows how a coin toss could be modelled using random integer

generation:

random_number ← RANDOM_INT(0, 1)

IF random_number = 0 THEN

 result ← 'heads'

ELSE # only other value is 1

 result ← 'tails'

ENDIF

This example shows how a student’s name could be picked at random from an array of
names again using random integer generation:

names ← ['Alice', 'Bob', 'Charlie', 'Dave', 'Eve']

random_number ← RANDOM_INT(0, LEN(names) - 1)

random_name ← names[random_number]

If your language only supports random real number generation between 0 and an upper limit

of 1 then this example could be rewritten as:

names ← ['Alice', 'Bob', 'Charlie', 'Dave', 'Eve']

random_real_number ← RANDOM_REAL(0, 1)

multiply real by the number of elements in the array

random_real_number ← random_real_number * LEN(names)

Round down the real number to its whole number part to

get an integer between 0 and LEN(names) - 1 inclusive

random_int_number ← ROUND_TO_INT(random_real_number)

random_name ← names[random_int_number]

Many languages will support randomly choosing an element from a data structure

directly:

names ← ['Alice', 'Bob', 'Charlie', 'Dave', 'Eve']

random_name ← RANDOM_CHOICE(names)

Although the specification requires students to be able to use their programming

language to generate random numbers, they do not need to understand the pseudo-

randomness of these numbers and how they are produced.

Note: The AQA pseudo-code guide only contains the RANDOM_INT subroutine and

so all questions in exam papers will use that. RANDOM_INT(a, b) will generate a

random integer between a and b inclusive.

© AQA and its licensors. All rights reserved 2 of 2

