
Teaching guide: Relational operations

This resource will help with understanding relational operations. It supports Section 3.2.4 of
our GCSE Computer Science specification (8525). The guide is designed to address the
following learning aims:

 Recognise the six relational operators.

 Evaluate Boolean expressions that use relational operators.

Ordering integers

Many data types (integer, character, string etc) have an 'order', which means that given

two variables a and b of the same data type only one of three possibilities is true:

 the value of a is less than the value of b (a comes before b in that data type's

ordering)

 the value of a is equal to the value of b (a and b are at the same position in that

data type's ordering)

 the value of a is greater than the value of b (a comes after b in that data type's

ordering)

In programming languages the following operators are used (they are known as logical
operators because the result of evaluating an expression using one is a Boolean value,

either True or False):

Logical operator Meaning Example

< less than 3 < 4 means 3 is less than 4

> greater than 4 > 3 means 4 is greater than 3

= equal to 3 = 3 means 3 is equal to 3

≠ not equal to 3 ≠ 4 means 3 is not equal to 4

≤ less than or equal to 3 ≤ 4 means 3 is less than or equal to 4

≥ greater than or equal to 4 ≥ 4 means 4 is greater than or equal to 4

All the examples above use values (3 and 4) directly and so it's obvious what the

results of the logical expression are (in fact they all evaluate to True). When

programming using logical operators you will

 compare the value of a variable to a value, eg a > 0

 compare the value of one variable to the value of another, eg a ≤ b

 combine the results of two or more logical comparisons using the Boolean
operators NOT, AND and OR, eg (a < b) AND (b < c)

© AQA 2020 1 of 2

Arithmetic operations are evaluated before relational operations and it is fairly simple to
combine the two types of operations although it is more readable to use brackets around the
arithmetic expressions. For example:

(3 * 4) ≤ 15 evaluates to 12 ≤ 15 which evaluates to True

(15 MOD 2) = 0 evaluates to 1 = 0 which evaluates to False

(50 – 40) > (3 * (2 + 5)) evaluates to 10 > 21 which evaluates to False

Ordering other types

All real numbers can be compared using the six relational operators above. Strings can also be

ordered using ‘dictionary’ or lexicographic order, eg 'aardvark' is less than 'apple'
because it comes before it in the dictionary.

Using logical operations in programming

When programming you will use logical operations mainly in selection and condition-controlled
iteration statements. There are Teaching Guides for these but here are a few examples:

Example code Meaning

IF a > b THEN

 temp ← a

 a ← b

 b ← temp

ENDIF

If the value of a is greater than the value of b then,

using a temporary variable, exchange the two
values.

WHILE a ≤ b

 a ← a * 2

ENDWHILE

As long as the value of a is less than or equal to b

double a.

REPEAT

 a ← a * 2

UNTIL a > b

Double the value in a until a > b.

To convert a WHILE statement to a

REPEAT-UNTIL statement you invert the

condition, ie ≤ becomes >, < becomes ≥, =

becomes ≠ and so on.

The IF example

After this has executed what will be the value of b ≤ a?

The WHILE example

How many times will this loop be run if the initial values of a and b are 1 and 27? What

will the final value of a be?

How many times will this loop run if the initial values of a and b are 27 and 1? What will the

final value of a be?

The REPEAT UNTIL example

How many times will this loop be run if the initial values of a and b are 1 and 27? What

will the final value of a be?

How many times will this loop run if the initial values of a and b are 27 and 1? What will the

final value of a be?

© AQA and its licensors. All rights reserved 2 of 2

