
© AQA 2020 1 of 7

Teaching guide: String handling
This resource will help with understanding string handling operations in a programming
language. It supports Section 3.2.8 of our GCSE Computer Science specification (8525).
The guide is designed to address the following outcomes:

 View strings as arrays of characters.

 Use understanding of arrays to access and update characters within strings.

 Explore conversion of other data types to strings.

Characters are the symbols that when put together provide the means for us to
communicate and understand each other using written text. Obvious examples are the letters

that can be found on the keyboard such as a, b and c which are different from A, B and C.

When you read the character '7' you will probably mean it as ‘the number seven’ or ‘the

quantity seven’ but as far as our programs are concerned it is just another symbol.

As well as the alphanumeric characters there are also the punctuation characters such as

;, .and ' ' (the space character).

When these character symbols are put into a sequence they are called strings (as in ‘a string
of characters’). Programming with strings is such common practice that almost all
programming languages have built-in ways to change, manipulate and convert them.

Even though the way a particular programming language implements strings may vary, it
helps to think of strings as arrays of characters – this way all of the main subroutines that
involve strings are easily understood and applied.

Strings as arrays: length, position and substring

If the string 'lovelace' is visualised as a string of characters then you have the

following sequence of characters with their positions shown above:

0 1 2 3 4 5 6 7

l o v e l a c e

© AQA 2020 2 of 7

One string subroutine is immediately obvious: counting the number of characters within the
string:

 The length of this string is 8

At first glance another subroutine looks straightforward too:

 The position of any character is the number above it in the table above, eg 'v' has

position 2

The position of 'l' is trickier as 'l' appears twice in the string – most position

subroutines will tell you the first position although some will allow you to specify where the
subroutine will start counting.

Furthermore, what is the position of 'b' (which doesn't appear in the string)? If a character

doesn’t exist in a string most position subroutines will give the value of -1 (which is

unequivocally not a position) although other languages will give a value that means

'nothing'. It is always essential to look at a language’s documentation to be sure.

Both length and position are subroutines that take the string as input and return an integer
and throughout these Teaching Guides they will be referred to as LEN and POSITION.

example subroutine calls of LEN and POSITION

the_string ← 'lovelace'

OUTPUT LEN(the_string) # Should output 8

OUTPUT POSITION(the_string, 'v') # Should output 2

OUTPUT POSITION(the_string, 'l') # Should output 0

OUTPUT POSITION(the_string, 'b') # Should output -1

Another subroutine that is commonly used with strings is to extract a sequence of
characters found next to each other in that string – this is called a substring. For example,

all of the following are substrings of 'lovelace':

'love'

'ace'

'elac'

'v'

© AQA 2020 3 of 7

Two other valid substrings that need to be considered are the string that contains no

characters (the ‘empty’ string, represented as '', but not to be confused with ", the double

quote, or ' ', the string consisting of a single space) and the string that contains all of the

original characters:

'lovelace'

To compute a substring we need to know:

 the starting position of the substring

 the ending position of the substring

 the string to be used

Some programming languages (eg Python) require the ending position of the substring to
be the index one further along than the last character required, and so with Python the

string 'lovelace', with a starting position of 0 and ending position of 3 would return

'lov' (Python does not use a substring subroutine so this would be written

"lovelace"[0:3]).

If we took the ending position (3) to be the last position of the substring within the main

string then the subroutine would return 'love'.

The following subroutine calls show how SUBSTRING could be used:

example subroutine calls of SUBSTRING

the_string ← 'lovelace'

the_substring ← SUBSTRING(0, 3, the_string) # = 'love'

the_substring ← SUBSTRING(2, 4, the_string) # = 'vel'

the_substring ← SUBSTRING(4, 7, the_string) # = 'lace'

the_substring ← SUBSTRING(4, LEN(the_string) - 1, the_string)

= 'lace'

the_substring ← SUBSTRING(0, LEN(the_string) - 1, the_string)

= 'lovelace'

© AQA 2020 4 of 7

The following example uses LEN, POSITION and SUBSTRING and is a subroutine that

performs basic validation of an email address. All email addresses contain an @ symbol
followed by some text, then at least one full stop character, then more text. So our
validation program could do the following:

 find the position of the @ symbol

 find the position of a full stop after this @ symbol

 make sure that the position of the full stop is at least two positions further along than
the @ symbol (to ensure that there is text between the @ and full stop)

 make sure that the position of this full stop is less than the overall length of the email
address (to ensure that some text follows the full stop)

SUBROUTINE validate_email(address)

 # check that the @ symbol is in the address

 at ← POSITION(address, '@')

 IF at = -1 THEN

 RETURN False

 ENDIF

 # get the remaining text after @ and find the first

 # position of a . symbol

 rest ← SUBSTRING(at + 1, LEN(address) - 1, address)

 stop ← POSITION(rest, '.')

 # if the position of . is -1 or if the position is

 # immediately after the @ symbol then the email is invalid

 IF stop < 1 THEN

 RETURN False

 ENDIF

 # if there is no more text after . then the email

 # is invalid

 IF stop = LEN(rest) - 1 THEN

 RETURN False

 ENDIF

 # if the email passes all of these checks then it is valid

 RETURN True

ENDSUBROUTINE

© AQA 2020 5 of 7

String concatenation

Concatenate means ‘to chain’ and string concatenation is chaining two strings together to

create a new one. If we took the two strings 'love' and 'lace', the concatenation of

these would be the new string 'lovelace'. This string operation commonly (but not

always) uses the + symbol, not to be confused with its more common use as the addition

operator.

evaluates to 'lovelace'

concatenated_string ← 'love' + 'lace'

evaluates to 'lacelove'

concatenated_string ← 'lace' + 'love'

evaluates to 'lovelacelove'

concatenated_string ← 'love' + 'lace' + 'love'

It is easy to forget that the space symbol is also a character, so if we need to concatenate
strings to produce an English sentence we need to introduce spaces too:

evaluates to 'computerscience'

concatenated_string ← 'computer' + 'science'

evaluates to 'computer science' (a space after computer)

concatenated_string ← 'computer ' + 'science'

also evaluates to 'computer science'

concatenated_string ← 'computer' + ' ' + 'science'

adds an 's' to an existing string 'developer'

evaluates to 'developers'

concatenated_string ← 'developer'

concatenated_string ← concatenated_string + 's'

String conversion

The following program asks the user to enter a number, adds one to that number and then
outputs the answer:

OUTPUT 'Enter an integer'

var ← USERINPUT

var ← var + 1

OUTPUT var

© AQA 2020 6 of 7

If you delve deeper into the type of number throughout this short program you might begin
to see a problem. USERINPUT would typically come from the keyboard and as such would
be a sequence of characters, ie a string.

When you output a value it would typically be displayed on a screen and you will also

assume that this would need a string to work. However, the third line of the program adds 1

to var and this is only possible if var is itself a number (either real or integer). It looks as

though the program has implicitly converted var from a string to a number and then back

to a string.

You could create a subroutine called STRING_TO_INT that takes a string as input and

returns the integer represented by this string. Likewise, we could create a subroutine called
INT_TO_STRING that converts an integer to a string. We could use these two

subroutines to rewrite the program above to:

OUTPUT 'Enter an integer'

string_var ← USERINPUT

int_var ← STRING_TO_INT(string_var)

int_var ← int_var + 1

string_var ← INT_TO_STRING(int_var)

OUTPUT string_var

or more tersely:

OUTPUT 'Enter an integer'

var ← STRING_TO_INT(USERINPUT)

var ← var + 1

OUTPUT INT_TO_STRING(var)

Either way, writing this in pseudo-code would normally not be needed because the intention
of the program is clear but you should be aware that operations such as this may be
necessary in your chosen language.

There is another issue with this program – what if the user enters something other than a
string that can be converted to an integer? Most programming languages would expect the
string input to STRING_TO_INT conversion subroutine to be something that can be

unambiguously converted, for example 3, 5, -54 or 0. If the user enters a string such as

'hello' then the program will most likely crash. This is covered in the Teaching Guide –

Data validation & authentication.

© AQA and its licensors. All rights reserved 7 of 7

This table lists four subroutines, their purpose and example input and output data:

Subroutine Purpose Input Return value

STRING_TO_INT
converts a string to its
integer value

'1' 1

'43' 43

'-9145' -9145

'one' error

'3.141' error

STRING_TO_REAL
converts a string to its
real value

'1.54' 1.54

'-9540.15' -9540.15

'4' 4.0

'two thirds' error

INT_TO_STRING

converts an integer
value to its string
representation

1 '1'

774 '774'

4.6 error

REAL_TO_STRING

converts a real value
to its string
representation

0.44 '0.44'

-9949.3 '-9949.3'

1 '1.0'

These four string conversion operations are the ones covered in the specification although it is
likely that your programming language will contain other string conversions, for example
converting dates and times that will enable you to write more complex programs. As always,
students should make themselves aware of the necessity and also the functionality of these
string conversion operations in their chosen language.

