

© AQA 2020 1 of 39

Teaching Guide: Subroutines and structured
programming

The first section of this guide will outline some key concepts and terminology for the
use of subroutines. The second section will outline the principles of the structured
approach to programming and how this links with the topic of subroutines.

There are a number of examples throughout which demonstrate some of the key
concepts. Some of the examples also implement subroutines that most languages
have built in (such as LEN). These have been used because it helps to explain what
actually happens when different built-in subroutines are used and is a good way to
reinforce both the advantages of subroutines, as well as the abstraction that already
exists in programming languages.

All of the example code is provided using the AQA pseudo-code format. At the end
of the document are appendices containing the same code examples in all of the
supported languages.

Defining and calling subroutines
A subroutine is the term given to a named ‘out of line’ block of code that can be run
from a main program (or main routine) or from another subroutine simply by using the
name.

It is good practice, and in some cases essential, to create/define subroutines at the
start of your code, which is why they are referred to as ‘out of line’ or ‘out of
sequence’.

Example

SUBROUTINE printMessage()
 OUTPUT 'This is a message inside a SUBROUTINE'
ENDSUBROUTINE

printMessage()

This is a very simple subroutine that displays a message at any point in the program
it is called. The subroutine is created (or defined) and given a name, in this case
printMessage. The subroutine contains code to output a message. Finally, the
subroutine is executed when printMessage is called.

© AQA 2020 2 of 39

Passing data into the subroutine with parameters
As seen in the example above, calling a subroutine allows you to reuse code, but
there is more that subroutines can do, and using parameters, as explained here, will
allow you to reuse sections of code in a more flexible way.

A parameter is a piece of data that we can ‘pass into’ a subroutine when it is called.
This allows us to give the subroutine specific data which can then be used within the
subroutine. The example below starts to explain how parameters work with
subroutines.

1 SUBROUTINE addTwoNumbers(num1, num2)

2 total  num1 + num2

3 OUTPUT total

4 ENDSUBROUTINE

5

6 addTwoNumbers(5, 10)

The code above is probably the simplest example of using parameters. In reality, this
program is so small that it would not normally be created as a subroutine, but it does
help to show how data is passed into them.

In this example a subroutine named addTwoNumbers has been created. When the
subroutine is called, two pieces of data are passed into the subroutine, in this
example the integers 5 and 10.

When the subroutine is called the first piece of data passed into the subroutine is 5.
When you look at where the subroutine is defined (line 1) you see that the first
parameter to be used within the subroutine has been named num1. This means that
within the subroutine, the value of num1 when the subroutine starts is 5 for the call
addTwoNumbers(5, 10).

SUBROUTINE addTwoNumbers(num1, num2)
 total  num1 + num2
 OUTPUT total
ENDSUBROUTINE

 addTwoNumbers(5, 10)

This continues now with the second piece of data being passed into the subroutine,
10. When the subroutine was defined, the second parameter was named num2. This
means that in the subroutine, the value of num2 when the subroutine starts is 10 for
the call addTwoNumbers(5, 10).

© AQA 2020 3 of 39

SUBROUTINE addTwoNumbers(num1, num2)
 total  num1 + num2
 OUTPUT total
ENDSUBROUTINE

addTwoNumbers(5, 10)

Important note

Often the terms parameters and arguments are used to describe the passing of
variables into a subroutine. Technically arguments are the values passed into the
subroutine when it is called (in the example above 5 and 10), and parameters are
the variables used by the subroutine when it is defined to hold these values (in the
example above num1 and num2). However, for the purpose of AQA GCSE
Computer Science, the term parameters will be used to refer to both.

Common mistakes with parameters
It is important that the number of values being passed into the subroutine and the
number of parameters given when the subroutine is defined are the same. Both
examples below are invalid and would cause an error, either because the subroutine
was expecting another value which it didn’t get so there are effectively variables
without any values, or because the subroutine was only expecting two values yet it is
being sent three.

Too few values passed into a subroutine

SUBROUTINE addTwoNumbers(num1, num2)
 total  num1 + num2
 OUTPUT total
ENDSUBROUTINE

addTwoNumbers(5)

Too many values passed into a subroutine

SUBROUTINE addTwoNumbers(num1, num2)
 total  num1 + num2
 OUTPUT total
ENDSUBROUTINE

addTwoNumbers(5, 10, 15)

© AQA 2020 4 of 39

Return values and scope

The following code is another example of using a subroutine and then passing in a
value to be used inside the subroutine. This example also adds a further feature,
namely a return value.

SUBROUTINE lenOfStr(string)
 length  0
 FOR character IN string
 length  length + 1
 ENDFOR
 RETURN length
ENDSUBROUTINE

phrase  'Computer Science'
phraseLen  lenOfStr(phrase)
OUTPUT phraseLen

This subroutine calculates the length of a string. This is a built-in feature in most
modern high-level languages (often called the LEN function), but programming your
own can be a very useful process that will not only help you to understand the use of
subroutines, but also understand that this is happening in the background all the time
while programming. The use of subroutines is one way that modern languages
abstract detail so that the programmer can focus more clearly on the task in front of
them.

In this example, the subroutine lenOfStr has one parameter and uses the string
value passed to it to determine the number of characters that it has.

This code also shows a further feature of subroutines, return values. As subroutines
are self-contained blocks of code, if they need to pass a value back to the calling
routine they need a way to do that. The return value is what is passed back to the
calling routine when the subroutine finishes; this value can be assigned to a variable,
or used within an expression or other statement, for example

IF lenOfStr(s) = 0 THEN
 OUTPUT 'The string is empty'
ENDIF

© AQA 2020 5 of 39

In the example code above, the RETURN statement returns the value of the
expression (a simple variable or a more complicated expression) following the
RETURN keyword to the calling routine.

Any variables that are created inside the subroutine will not be visible outside it. The
places within the code that the variable can be seen and accessed from is referred to
as the ‘scope’ of the variable.

Local variables

Variables created inside a subroutine are local to that routine. They are said to have
‘local scope’. This means they only exist within that subroutine and so can only be
accessed from within that subroutine.

If you create a variable inside a subroutine and then try and use that variable from a
point in the code that is outside the subroutine what happens will depend on the
programming language you are using.

Global variables

The other type of scope that variables can have is ‘global scope’. When a variable is
created it can be given global scope which means it can be accessed and used from
anywhere within the code. While at first this seems like a very useful way of
programming, large scale use of global variables usually points to code that has not
been very well planned.

Because they can be altered anywhere in the program it can be difficult to find where
an erroneous change to a global variable has been made. The widespread use of
global variables often results in logic errors that are hard to find and their use is to be
discouraged when writing structured, robust and secure programs.

Subroutine

Parameters

Return value

© AQA 2020 6 of 39

Common errors with return values

There are a number of logic or syntax errors that can be made when using return
values, but there are two in particular that are quite common.

Missing RETURN inside a subroutine

In the first example, the return value has been removed from inside the subroutine.
The variable phraseLen has still been declared but without a return value there is
nothing to assign to it. Different languages respond to this error differently, and while
some will still run and the mistake would result in a logic error where the program
does not do what is expected, others will detect the error when they are compiling
and therefore the code will not even run.

SUBROUTINE lenOfStr(string)
 length  0
 FOR character IN string
 length  length + 1
 ENDFOR
ENDSUBROUTINE

phrase  'Computer Science'
phraseLen  lenOfStr(phrase)
OUTPUT phraseLen

Missing variable to assign the return value to

In this second example, the variable phraseLen has been removed, so the return
value has nowhere to be assigned. Again, different languages may handle this
slightly differently, but in the majority of cases this would result in an error and again
the code will not run.

SUBROUTINE lenOfStr(string)
 length  0
 FOR character IN string
 length  length + 1
 ENDFOR
 RETURN length
ENDSUBROUTINE
phrase  'Computer Science'
lenOfStr(phrase)
OUTPUT phraseLen

Note that lenOfStr(phrase) can be used directly in the OUTPUT statement,
and that the phrase being passed into lenOfStr can passed as the parameter
value, eg

OUTPUT lenOfStr('Computer Science')

would have exactly the same effect as the last three lines of code above.

© AQA 2020 7 of 39

Subroutines, functions and procedures
Another common misconception with subroutines is the terminology “function” and
“procedure”. Both functions and procedures are examples of subroutines, and the
three phrases (subroutine, function and procedure) are often used interchangeably in
many conversations between programmers and on many programming forums.

However, there is a subtle difference:

• a subroutine is any named ‘out of line’ block of code that can be called
from a main program (or main routine) or from within another
subroutine.

• a function is a type of subroutine that returns a value.
• a procedure is a type of subroutine that does not return a value.

The examples below show the same piece of code that was used to outline the use
of return values and scope, but with the slight modification that outlines the difference
between functions and procedures.

Procedure Function

SUBROUTINE lenOfStr(string)
 length  0
 FOR character IN string
 length  length + 1
 ENDFOR
 OUTPUT length
ENDSUBROUTINE

phrase  'Computer Science'
lenOfStr(phrase)

SUBROUTINE lenOfStr(string)
 length  0
 FOR character IN string
 length  length + 1
 ENDFOR
 RETURN length
ENDSUBROUTINE

phrase  'Computer Science'
phraseLen  lenOfStr(phrase)
OUTPUT phraseLen

Both of these subroutines are defined, called and have data passed to them using
parameters in the same way. The subtle difference is in how the result (the length of
the string passed in) is finally handled.

In the procedure a value is not returned, which means the subroutine has to output
the value of the length variable because the local scope of the variable would
mean it could not be accessed from outside the subroutine.

In the function the RETURN keyword has been used which means the variable
phraseLen can be assigned the value that is being returned. One advantage of
this is that the value stored in phraseLen is then available to the rest of the
program and can be used in other calculations as required.

© AQA 2020 8 of 39

Advantages of using subroutines
Using subroutines can help to make programs quicker to write and simpler to modify
and debug, and, when implemented well, can make your programs far easier to read
and follow.

Reusing code

Once a subroutine has been created (defined) it can be called as many times as
needed. When first starting to program it is quite common to come across problems
that require you to repeat code. The way most people get around this to begin with is
to copy and paste the code they’ve already written, but this can lead to errors if they
change some copies of the code but not the rest.

The more effective way is to create a subroutine and then call this subroutine when
required. There is no limit to the number of times a subroutine can be called so this
ability to reuse code can be very beneficial.

Simpler to modify

Another advantage of using subroutines is that your code will be easier to change. If
you have large sections of duplicated code and need to make a change, then as
mentioned above, you need to make sure you have changed the code in every
location. Using subroutines allows for a cascading change, so changes to a
subroutine means that those changes take effect every time the subroutine is called.

Easier to debug

Using subroutines also makes your code easier to test and debug. When a program
is broken into subroutines, you can test each one of these individually. Once
thoroughly tested the subroutine can be used knowing that any errors are much more
likely to be caused by other code.

© AQA 2020 9 of 39

Summary of the power of subroutines
The example below shows a summary of the power of using subroutines, and how
much more effective and efficient programs are when using them effectively.

This example looks at three different ways of building a simple 3x3 grid, with each
space being taken up by ' O ', as shown in the example output below.

Example output 1
 O | O | O
 O | O | O
 O | O | O

Example code 1

This first example does not use any subroutines and just builds the grid using a
nested for loop to output 3 cells per line on 3 lines.

height  3
width  3
FOR row  1 TO height
 FOR column  1 TO width
 IF (column MOD 3) = 0 THEN
 OUTPUT ' O '
 ELSE
 OUTPUT ' O |'
 ENDIF
 ENDFOR
ENDFOR

Example code 2

If we wanted to output more than one grid in our program, we have two choices: we
can copy and paste the code wherever the grid is needed, or we can create a
subroutine for the grid and then just call the subroutine when we want to use it.

SUBROUTINE grid3x3()
 height  3
 width  3
 FOR row  1 TO height
 FOR column  1 TO width
 IF (column MOD 3) = 0 THEN
 OUTPUT ' O '
 ELSE
 OUTPUT ' O |'
 ENDIF
 ENDFOR
 ENDFOR
ENDSUBROUTINE

© AQA 2020 10 of 39

Other Code
grid3x3()
Other Code
grid3x3()
Other Code

This code has now been placed inside a subroutine. The subroutine is called
grid3x3 and can be called as many times as needed.

If we wanted to make a change such as replacing all of the Os with Xs, then
changing it inside the subroutine means that every time it is called those changes will
be seen. If you had just copied and pasted the code then it would be very easy to
miss one of these copies.

Example code 3

However, the advantages of using subroutines can go much further than this. Using
the example above, we can now create a subroutine that instead of drawing a 3x3
grid, will draw a grid of whatever size we might want. The pseudo-code example
below shows how this can be done using parameters to pass data into the
subroutine.

SUBROUTINE drawGrid(height, width)
 FOR row  1 TO height

 FOR column  1 TO width
 IF (column MOD width) = 0 THEN
 OUTPUT ' O '
 ELSE
 OUTPUT ' O |'
 ENDIF
 ENDFOR
 ENDFOR
ENDSUBROUTINE

drawGrid(3, 3)
drawGrid(9, 9)
drawGrid(7, 2)

In this example, the subroutine has now been renamed to drawGrid, and expects
two values to be passed into it when it is called. This subroutine can now draw grids
of different dimensions.

© AQA 2020 11 of 39

Structured programming
Structured programming is an approach that combines a range of different skills and
techniques to ensure that programs are quicker to write, test, debug and modify, and
easier to think about and understand. Structured programming is tightly linked to
subroutines because the structured approach requires a programmer to analyse a
problem and then decompose it into a series of modular sub-problems (modularised
programming). The solution to each one of these sub-problems is then coded as a
subroutine, with information passed between these subroutines using parameters
and return values.

The following generic example could be developed further and once a coded solution
exists, it could be reused in a wide range of other possible programs. This example
has been chosen because it is a common requirement in many programs that involve
a menu or require the user to be able to choose from multiple options.

Create a program that will display a menu to a user, who can then select from
four possible options. Once the user has selected one of the options a
suitable message should be output and the menu should be displayed again
for the user to choose a new option (unless they decided to leave the
program). If the user selects an option that is not available to them, they
should be told their choice was not valid and that they need to select the
option again. The final option should end the program when chosen.

There are many different ways of solving this problem. Some of them would involve
while loops or repeat until loops to manage both the validation and the return to the
menu section. However, we will now show how this type of program could be solved
using the structured approach.

Decompose
Analyse the problem and break it down into smaller, similar sized areas that need
their own solutions. You may come up with a slightly different set of sub-problems,
but one possible set would be the following:

1. Show the menu
2. User enters their menu choice
3. Validate the user input
4. Display the relevant message for their chosen option.

© AQA 2020 12 of 39

Plan and code
Once you have decomposed the problem into different sub-problems you can then
create a subroutine for each of these. The code below shows subroutines that have
been created as solutions to the sub-problems above.

SUBROUTINE showMenu()
 OUTPUT 'Choose a menu option:'
 OUTPUT 'Option A - Select 1'
 OUTPUT 'Option B - Select 2'
 OUTPUT 'Option C - Select 3'
 OUTPUT 'Quit - Select 4'
ENDSUBROUTINE

SUBROUTINE validateNumber(lowest, highest)
 # This will work for user input that is an
integer
 num  USERINPUT
 WHILE (num < lowest) OR (num > highest)
 OUTPUT 'Invalid choice, try again'
 num  USERINPUT
 ENDWHILE
 RETURN num
ENDSUBROUTINE

SUBROUTINE showChoice(num)
 IF num = 1 THEN
 OUTPUT 'You have chosen Option A'
 ELSE IF num = 2 THEN
 OUTPUT 'You have chosen Option B'
 ELSE IF num = 3 THEN
 OUTPUT 'You have chosen Option C'
 ELSE IF num = 4 THEN
 OUTPUT 'You have chosen to Quit'
 ENDIF
ENDSUBROUTINE

If we are following this example through, we see that the main program would be
very simple:

choice  0
WHILE choice ≠ 4
 showMenu()
 choice  validateNumber(1, 4)
 showChoice(choice)
ENDWHILE
OUTPUT 'Thank you for using my program.'

© AQA 2020 13 of 39

When the showMenu subroutine runs it will display the possible menu choices. The
function validateNumber is then called to get the user’s choice. The choice is
validated using the two parameters as the minimum and maximum allowed values for
the choice. The actual valid choice made is then returned to the calling routine and
stored in the variable named choice and this value is then passed into the
showChoice subroutine, which then uses this to display the appropriate option.

Once the showChoice subroutine has been completed the program will use the
while loop condition to check if the menu needs displaying again.

© AQA 2020 14 of 39

Appendices
The following appendices contain the code from the pseudo-code examples written in
each of the supported languages, C#, Python and VB.NET. In each case, you may
need to make slight changes to the code depending on your programming
environment. The code is provided by way of example.

Appendix 1 – C# code examples

Appendix 2 – Python (version 3) code examples

Appendix 3 – VB.NET code examples

© AQA 2020 15 of 39

Appendix 1 – C# implementations of the pseudo-code examples
Defining and calling subroutines

using System;
namespace TRB_Subroutines_And_Structured_Programming {
 class Program {
 # In C# void declares that the subroutine being defined is a
 # procedure because it does not return anything.
 # The keyword static is needed so that the subroutine can
 # be called in the way shown in the subroutine Main
 static void printMessage() {
 Console.WriteLine("This is a message inside a SUBROUTINE");
 }

 static void Main(string[] args) {
 printMessage();
 }
 }
}

© AQA 2020 16 of 39

Passing data into the subroutine with parameters

using System;
namespace TRB_Subroutines_And_Structured_Programming {
 class Program {
 # In C# the type of the parameters comes before the name of the
 # parameter. Here both the parameters are defined to be of
 # the int type (integers or whole numbers).
 # To amend the subroutine so that it can be passed real
 # numbers, eg 25.7, 19.6, etc, change int to single. You can always
 # pass integers to a subroutine expecting floats,
 # but not the other way around.
 static void addTwoNumbers(int num1, int num2) {
 int total = num1 + num2;
 Console.WriteLine(total);
 }

 static void Main(string[] args) {
 addTwoNumbers(5, 10);
 }
 }
}

© AQA 2020 17 of 39

Common mistakes with parameters

Too few values passed into a subroutine

using System;
namespace TRB_Subroutines_And_Structured_Programming {
 class Program {
 static void addTwoNumbers(int num1, int num2) {
 int total = num1 + num2;
 Console.WriteLine(total);
 }

 static void Main(string[] args) {
 addTwoNumbers(5);
 }
 }
}

In Visual Studio addToNumbers will be underlined in red and hovering the mouse over it will show the following:

© AQA 2020 18 of 39

Too many values passed into a subroutine

using System;
namespace TRB_Subroutines_And_Structured_Programming {
 class Program {
 static void addTwoNumbers(int num1, int num2) {
 int total = num1 + num2;
 Console.WriteLine(total);
 }

 static void Main(string[] args) {
 addTwoNumbers(5, 10, 15);
 }
 }
}

In Visual Studio addToNumbers will be underlined in red and hovering the mouse over it will show the following:

© AQA 2020 19 of 39

Return values and scope
using System;
namespace TRB_Subroutines_And_Structured_Programming {
 class Program {
 static int lenOfStr(string String) {
 int length = 0;
 foreach (char character in String) {
 length = length + 1;
 }
 return length;
 }

 static void Main(string[] args) {
 string phrase = "Computer Science";
 int phraseLen = lenOfStr(phrase);
 Console.WriteLine(phraseLen);
 string s = "";
 if (lenOfStr(s) == 0) {
 Console.WriteLine("The string is empty");
 }
 }
 }
}

Notes:

1. Rather than use void to indicate that a subroutine is a procedure we give the type of what is returned by the subroutine (its return type)
to indicate that this is a function

2. Because string is a reserved word in C# we have had to use String as the name of the parameter
3. Strings in C# are enclosed with double quotes, eg "Computer Science", not single quotes as used in pseudo-code
4. length is a local variable within the subroutine lenOfStr and must be defined with its type, in this case int for integer

© AQA 2020 20 of 39

Summary of the power of subroutines

Example 1

using System;
namespace TRB_Subroutines_And_Structured_Programming {
 class Program {
 static void Main(string[] args) {
 int height = 3;
 int width = 3;
 for (int row = 1; row <= height; row++) {
 for (int column = 1; column <= width; column++) {
 if ((column % 3) == 0) {
 Console.WriteLine(" O ");
 }
 else {
 Console.Write(" O |");
 }
 }
 }
 }
 }
}

Notes
1. A for statement in C# has quite a different look to the FOR statement in pseudo-code but they do exactly the same thing
2. Because we want to make each row of three symbols show on a different line we output a new line (using Console.WriteLine)

after every three symbols which are output using Console.Write which doesn’t output a new line.

© AQA 2020 21 of 39

Example 2

using System;
namespace TRB_Subroutines_And_Structured_Programming {
 class Program {
 static void grid3x3() {
 int height = 3;
 int width = 3;
 for (int row = 1; row <= height; row++) {
 for (int column = 1; column <= width; column++) {
 if ((column % 3) == 0) {
 Console.WriteLine(" O ");
 }
 else {
 Console.Write(" O |");
 }
 }
 }
 }

 static void Main(string[] args)
 {
 grid3x3();
 }
 }
}

© AQA 2020 22 of 39

Example 3

using System;
namespace TRB_Subroutines_And_Structured_Programming {
 class Program {
 static void drawGrid(int height, int width) {
 for (int row = 1; row <= height; row++) {
 for (int column = 1; column <= width; column++) {
 if ((column % width) == 0) {
 Console.WriteLine(" O ");
 }
 else {
 Console.Write(" O |");
 }
 }
 }
 }

 static void Main(string[] args)
 {
 drawGrid(3, 3);
 drawGrid(9, 9);
 drawGrid(7, 2);
 }
 }
}

Notes
1. C# uses == to test for two numbers or strings being equal
2. Because the subroutine will no longer always produce a grid that is three wide the if statement inside the inner loop if ((column

% width) == 0) has had to be changed to use the width of the grid that the current call wants (you could leave it as it was and see
what happens when you run the program)

© AQA 2020 23 of 39

3. You could make the subroutine even more general so that it could print a grid of X characters, or of @ characters, or any character that
you wanted as well as being of any height and width. How?

Plan and code - Menu
using System;
namespace TRB_Subroutines_And_Structured_Programming {
 class Program {

 static void showMenu() {
 Console.WriteLine("Choose a menu option");
 Console.WriteLine("Option A - Select 1");
 Console.WriteLine("Option B - Select 2");
 Console.WriteLine("Option C - Select 3");
 Console.WriteLine("Quit - Select 4");
 }

 static int validateNumber(int lowest, int highest) {
 int num;
 num = Convert.ToInt32(Console.ReadLine());
 while ((num < lowest) || (num > highest)) {
 Console.WriteLine("Invalid choice try again");
 num = Convert.ToInt32(Console.ReadLine());
 }
 return num;
 }

 static void showChoice(int num) {
 if (num == 1) {
 Console.WriteLine("You have chosen Option A");
 }
 else if (num == 2) {
 Console.WriteLine("You have chosen Option B");

© AQA 2020 24 of 39

 }
 else if (num == 3) {
 Console.WriteLine("You have chosen Option C");
 }
 else if (num == 4) {
 Console.WriteLine("You have chosen to Quit");
 }
 }

 static void Main(string[] args) {
 int choice = 0;
 while (choice != 4) {
 showMenu();
 choice = validateNumber(1, 4);
 showChoice(choice);
 }
 Console.WriteLine("Thank you for using my program");
 }
 }
}

Notes
1. Because the C# subroutine Console.ReadLine returns a string, C# needs the programmer to convert this to an integer using the

Convert.ToInt32 subroutine
2. C# uses the symbol || to mean OR

© AQA 2020 25 of 39

Appendix 2 – Python implementations of the pseudo-code examples
Defining and calling subroutines

def printMessage():
 print('This is a message inside a SUBROUTINE')

printMessage()

Passing data into the subroutine with parameters

def addTwoNumbers(num1, num2):
 total = num1 + num2
 print(total)

addTwoNumbers(5, 10)

© AQA 2020 26 of 39

Common mistakes with parameters

Too few values passed into a subroutine

def addTwoNumbers(num1, num2):
 total = num1 + num2
 print(total)

addTwoNumbers(5)

In the Python WingIDE addToNumbers will be highlighted in red and the following message will be displayed in the exceptions area:

builtins.TypeError: addTwoNumbers() missing 1 required positional
argument: 'num2'

Too many values passed into a subroutine

def addTwoNumbers(num1, num2):
 total = num1 + num2
 print(total)

addTwoNumbers(5, 10, 15)

In the Python WingIDE addToNumbers will be highlighted in red and the following message will be displayed in the exceptions area:

builtins.TypeError: addTwoNumbers() takes 2 positional arguments but 3
were given

© AQA 2020 27 of 39

Return values and scope

def lenOfStr(string):
 length = 0
 for character in string:
 length = length + 1
 return length

phrase = 'Computer Science'
phraseLen = lenOfStr(phrase)
print(phraseLen)

Summary of the power of subroutines

Example 1

height = 3
width = 3
for row in range(1, height + 1):
 for column in range(1, width + 1):
 if (column % 3) == 0:
 print(' O ')
 else:
 print(' O |', end='')

Notes:

1) Python uses the % operator for the MOD (remainder) function
2) The , end='' element in the print command keeps the output on the same line and does not issue a CRLF

© AQA 2020 28 of 39

Example 2

def grid3x3():
 height = 3
 width = 3
 for row in range(1, height + 1):
 for column in range(1, width + 1):
 if (column % 3) == 0:
 print(' O ')
 else:
 print(' O |', end='')

grid3x3()
Other code
grid3x3()

Example 3

def drawGrid(height, width):
 for row in range(1, height + 1):
 for column in range(1, width + 1):
 if (column % width) == 0:
 print(' O ')
 else:
 print(' O |', end='')

drawGrid(3, 3)
drawGrid(9, 9)
drawGrid(7, 2)

© AQA 2020 29 of 39

Plan and code - Menu

def showMenu():
 print('Choose a menu option:')
 print('Option A - Select 1')
 print('Option B - Select 2')
 print('Option C - Select 3')
 print('Quit - Select 4')

def validateNumber(lowest, highest):
 num = int(input('Enter your choice'))
 while (num < lowest) or (num > highest):
 print('Invalid choice, try again')
 num = int(input('Enter your choice'))
 return num

def showChoice(num):
 if num == 1:
 print('You have chosen Option A')
 elif num == 2:
 print('You have chosen Option B')
 elif num == 3:
 print('You have chosen Option C')
 elif num == 4:
 print('You have chosen to Quit')

© AQA 2020 30 of 39

choice = 0
while choice != 4:
 showMenu()
 choice = validateNumber(1, 4)
 showChoice(choice)
print('Thank you for using my program.')

© AQA 2020 31 of 39

Appendix 3 – VB.NET implementations of the pseudo-code examples
Defining and calling subroutines

Module Module1
 Sub PrintMessage()
 Console.WriteLine("This is a message inside a SUBROUTINE")
 End Sub

 Sub Main()
 PrintMessage()
 End Sub
End Module

Notes:

1. In Visual Studio subroutine names start with a capital letter. The code will execute with a lower case letter but will give warnings
2. Strings in VB are enclosed with double quotes, eg "Computer Science", not single quotes as used in pseudo-code

Passing data into the subroutine with parameters

Module Module1
 Sub addTwoNumbers(num1 As Integer, num2 As Integer)
 Dim total As Integer
 total = num1 + num2
 Console.WriteLine(total)
 End Sub

 Sub Main()
 addTwoNumbers(5, 10)
 End Sub
End Module

© AQA 2020 32 of 39

Common mistakes with parameters

Too few values passed into a subroutine

Module Module1
 Sub addTwoNumbers(num1 As Integer, num2 As Integer)
 Dim total As Integer
 total = num1 + num2
 Console.WriteLine(total)
 End Sub

 Sub Main()
 addTwoNumbers(5)
 End Sub
End Module

In Visual Studio addToNumbers will be underlined in red and hovering the mouse over it will show the following:

© AQA 2020 33 of 39

Too many values passed into a subroutine

Module Module1
 Sub addTwoNumbers(num1 As Integer, num2 As Integer)
 Dim total As Integer
 total = num1 + num2
 Console.WriteLine(total)
 End Sub

 Sub Main()
 addTwoNumbers(5, 10, 15)
 End Sub
End Module

In Visual Studio addToNumbers will be underlined in red and hovering the mouse over it will show the following:

© AQA 2020 34 of 39

Return values and scope

Module Module1
 Function LenOfStr(str As String) As Integer
 Dim length = 0
 For Each character As Char In str
 length = length + 1
 Next
 Return length
 End Function

 Sub Main()
 Dim phrase = "Computer Science"
 Dim phraseLen = LenOfStr(phrase)
 Console.WriteLine(phraseLen)
 End Sub
End Module

Notes:

1. Because string is a reserved word in VB.NET we have had to use str as the name of the parameter
2. Strings in VB.NET are enclosed with double quotes, eg "Computer Science", not single quotes as used in pseudo-code

© AQA 2020 35 of 39

Summary of the power of subroutines

Example 1

Module Module1
 Sub Main()
 Dim height = 3
 Dim width = 3
 For row = 1 To height
 For column = 1 To width
 If (column Mod 3) = 0 Then
 Console.WriteLine(" O ")
 Else
 Console.Write(" O |")
 End If
 Next
 Next
 End Sub
End Module

© AQA 2020 36 of 39

Example 2

Module Module1
 Sub Grid3x3()
 Dim height = 3
 Dim width = 3
 For row = 1 To height
 For column = 1 To width
 If (column Mod 3) = 0 Then
 Console.WriteLine(" O ")
 Else
 Console.Write(" O |")
 End If
 Next
 Next
 End Sub

 Sub Main()
 Grid3x3()
 End Sub
End Module

© AQA 2020 37 of 39

Example 3

Module Module1
 Sub DrawGrid(height As Integer, width As Integer)
 For row = 1 To height
 For column = 1 To width
 If (column Mod width) = 0 Then
 Console.WriteLine(" O ")
 Else
 Console.Write(" O |")
 End If
 Next
 Next
 End Sub

 Sub Main()
 DrawGrid(3, 3)
 DrawGrid(9, 9)
 DrawGrid(7, 2)
 End Sub

End Module

© AQA 2020 38 of 39

Plan and code - Menu

Module Module1
 Sub ShowMenu()
 Console.WriteLine("Choose a menu option")
 Console.WriteLine("Option A - Select 1")
 Console.WriteLine("Option B - Select 2")
 Console.WriteLine("Option C - Select 3")
 Console.WriteLine("Quit - Select 4")
 End Sub

 Function ValidateNumber(lowest As Integer, highest As Integer)
 Dim num As Integer
 num = Convert.ToInt32(Console.ReadLine())
 While (num < lowest) Or (num > highest)
 Console.WriteLine("Invalid choice try again")
 num = Convert.ToInt32(Console.ReadLine())
 End While
 Return num
 End Function

 Sub ShowChoice(num)
 If num = 1 Then
 Console.WriteLine("You have chosen Option A")
 ElseIf num = 2 Then
 Console.WriteLine("You have chosen Option B")
 ElseIf num = 3 Then
 Console.WriteLine("You have chosen Option C")
 ElseIf num = 4 Then
 Console.WriteLine("You have chosen to Quit")
 End If
 End Sub

© AQA 2020 and its licensors. All rights reserved. 39 of 39

 Sub Main()
 Dim choice = 0
 While choice <> 4
 ShowMenu()
 choice = ValidateNumber(1, 4)
 ShowChoice(choice)
 End While
 Console.WriteLine("Thank you for using my program")
 End Sub
End Module

