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Teaching guide: Trace tables 
 
 

This guide explains the concepts and ideas that are important to developing trace 
tables for algorithms in GCSE Computer Science 8525.  

The first section gives a broad overview of what trace tables are and provides a 
range of examples for WHILE loops, FOR Loops and nested FOR Loops.  

The next section provides a guide to completing a trace table for a linear search 
algorithm. 

The final section provides guidance on developing student understanding of trace 
tables, with ideas to introduce them in the early stages of programming.  

What are trace tables? 

Trace tables are tables that consist of columns, each representing a variable, a 
condition, or an output in an algorithm, although not every variable, condition or 
output need be included in a trace table. 

The purpose of the table is that we can run through an algorithm and simulate what a 
computer would do if the program were executed. We complete the table to show 
how the values within the variables change, what the conditions would evaluate to, 
and what outputs would be generated.  

There are two main reasons that trace tables are used. 

 The first is to determine what an algorithm does by running through it to see 
what happens as the algorithm runs. 

 The second is to test the logic of an algorithm in case there are errors that are 
not easily spotted. 

The following examples show some basic algorithms and their trace tables. 

  



© AQA 2020 2 of 17  

 

Example 1 

The algorithm below contains 1 variable (num), 1 condition (num < 500) and 1 

output (OUTPUT num). The trace table shows how this algorithm would run if the user 

entered an input of 4. 

num ← USERINPUT 

WHILE num < 500 

   num ← num * 2 

ENDWHILE 

OUTPUT num 

 

num num < 500 OUTPUT 

4 True  

8 True  

16 True  

32 True  

64 True  

128 True  

256 True  

512 False  

  512 

 
Example 2 

Although the algorithm above only contains one variable, trace tables can keep track 
of multiple variables by using additional columns. The algorithm below is an 
extension of the algorithm above, and this time the program will also keep track of 
how many times the while loop has repeated. In this example the user enters an 

input of 16. 

num ← USERINPUT 

count ← 0 

WHILE num < 500 

   num ← num * 2 

   count ← count + 1 

ENDWHILE 

OUTPUT num 

OUTPUT count 

 

num count num < 500 OUTPUT 

16 0 True  

32 1 True  

64 2 True  

128 3 True  

256 4 True  

512 5 False  

   512 

   5 
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Example 3 

Trace tables help you to determine how an algorithm will run and are especially 
useful when you have nested structures that require you to keep track of multiple 
variables. The algorithm below contains a simple FOR loop.  

FOR i ← 1 TO 4 

   OUTPUT i * 2 

ENDFOR 

The trace table for this example is shown below. Although no variable is re-assigned 
inside the FOR loop, there is an output which we can keep track of with a trace table. 

 

i Output 

1 2 

2 4 

3 6 

4 8 

Example 4 

The algorithm below has introduced additional elements which have an impact on 
how the algorithm runs. The best way to test this algorithm is to do a dry run using a 
trace table. The trace table, with a brief explanation is shown below. 
 

num ← 0 

total ← 0 

FOR i ← 1 TO 3 

   FOR j ← 1 TO 3 

      num ← j * i 

      total ← total + num 

   ENDFOR 

ENDFOR 

OUTPUT total 

 

Normally the order of variables in a trace table is the order in which they are first 
encountered in the algorithm or program. 
 

 

 

 

 

 

 

 

 

 

 

 

num total i j OUTPUT 

0 0 1 1  

1 1  2  

2 3  3  

3 6 2 1  

2 8  2  

4 12  3  

6 18 3 1  

3 21  2  

6 27  3  

9 36   36 
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The values for num and total are the first parts of this trace table that need to be 

completed. They are both set to 0 before the first FOR loops starts. 

We then have two FOR loops, an outer FOR loop that uses i to count from 1 to 3, 

and an inner FOR loop that uses j to count from 1 to 3. When loops are nested, the 

inner FOR loop repeats entirely, for every time the outer FOR loop repeats once. You 

can think of this like the hours and minute hands on a clock. For every time the hour 
hand moves on one, the minute hand moves on sixty and goes round the entire clock 
face. 

There are two variables that are re-assigned every time the inner FOR loop repeats. 

The trace table keeps track of how the values for i and j change, so keeping track 

of the way that num (in the line num ← j * i) changes is straight forward. The 

trace table also keeps track of value stored in total, so adding to this total each 

time is much easier for us to follow. 

The flow of time in a trace table 

In a trace table time flows in a left-to-right, top-to-bottom fashion, just like reading a 
book (at least in Western cultures). This means that finding the values of variables on 

which an expression depends, eg num ← j * i, is just a case of going back 

through the table in a right-to-left, bottom-to-top fashion until you find the required 
column, then up to a cell with a value in it (the last time that variable's value 
changed). 

The highlighted square in the table above shows how the new value of num has 

been arrived at. First you need to go up a row and then with the lower arrow just 

going right until it encounters a cell in the j column with a value in it (3) showing the 

latest value of j and the upper arrow going right to the i column and then up to the 

previous row, until it encounters a cell in the i column with a value in it (2). 
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Step by step trace table for a linear search 

The following breaks down the process of completing a trace table for a linear 
search. This document is not designed to offer a full and complete explanation of 
how a linear search works, but focuses on the steps that are required to take a 
specific algorithm and complete a trace table to prove the algorithm works correctly. 

A linear search is an algorithm that is used to check if a specific item is present in a 
data structure. The algorithm loops over the data structure, comparing each item one 
at a time to the item that is being searched for. If the item is found the algorithm 
stops, but if every item in the structure is checked and no match is found, then the 
algorithm will alert the user that the item is not in the structure. 

The pseudo-code for this algorithm is shown below and the line numbers have been 
included so they can be referred to at different stages of the explanation in the 
following pages. It is advised that you refer to this page to identify specific parts of 
the algorithm as the trace table is gradually completed. 

Note: There are different ways of implementing a linear search, and while this is an 
accurate way of doing so, it is not the only way. 

Step by step trace table with the input 16 

The following pages will step through the completion of a trace table for this algorithm 

when the input given will be 16. Rather than complete the entire trace table in one 

go, this will guide you through each stage of completing the trace table and reference 
the lines of code that are relevant as the trace table is being completed. 

The structure that we are searching is called arrayToSearch, and is declared on 

line 1. In this implementation we will also start counting the data structure index at 0.  

arrayToSearch ← [4, 8, 15, 16, 23, 42] 

 

Index [0] [1] [2] [3] [4] [5] 

Value 4 8 15 16 23 42 

1 arrayToSearch ← [4, 8, 15, 16, 23, 42] 

2  

3 found ← False 

4 itemToFind ← USERINPUT 

5  

6 FOR i ← 0 TO LEN(arrayToSearch) – 1 

7    IF arrayToSearch[i] = itemToFind THEN 

8       OUTPUT 'Item found at index', i 

9       found ← True 

10       BREAK   # this will exit the loop structure 

11    ENDIF 

12    i ← i + 1 

13 ENDFOR 

14  

15 IF found = False THEN     # or IF NOT found THEN 

16  OUTPUT 'The item is not in the list' 

17 ENDIF 
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Step 1 

The first step of a trace table is to complete the values that are declared at the start 
of the algorithm. 

In this example the variables found and itemToFind are both given values at the 

start. The value for found is written into line 3 of the program, whereas the value for 

itemToFind is assigned a user input on line 4, and as already mentioned the input 

given to the program will be 16. 

 

found itemToFind i arrayToSearch[i] 

False 16   

 
Note: The array arrayToSearch is also declared at the start of the algorithm on 

line 1, but it does not have any column headings because its values do not change. If 
we were tracing a sort which rearranged the elements of the array then they would 
need to be included. 

Step 2 

We then continue to move through the algorithm. The next line of the program that 
runs in line 6, where the FOR loop starts. Trace tables become more complex when 

programs include loops such as FOR, WHILE and REPEAT, but they also become 

more useful when testing such programs to see if an algorithm is working correctly 
and/or identifying where the problems in the logic of an algorithm might be.  

Hint: When you see a loop in an algorithm that you are tracing, it is always useful to 
find where that loop ends, and then check which variables inside the loop you will 
have to trace. In this example the loop starts on line 6 and finishes on line 13. Inside 

the loop i, found and arrayToSearch[i] are all used (and, apart from i, could 

be modified) so we know those are the columns we need to include. 

In this example the FOR loop initialises i to 0 on line 6, therefore we can enter that 

into the trace table. On line 7 the condition in the IF statement compares 

arrayToSearch[i] to itemToFind. We have just completed the table to state 

what the value of i is at this point, so we can now also determine that the value of 

arrayToSearch[i] at this point is the first item in the list (due to 0 based 

indexing). 

4 (arrayToSearch[i] when i is 0) does not equal itemToFind (16) and so 

the two statements inside the IF statement are not executed. 

 
found itemToFind i arrayToSearch[i] 

False 16 0 4 

Step 3 

The algorithm then continues, and i increments by 1 on line 12, before looping back 

round to line 6. When i increments on line 12 we now create a new row on the trace 

table. The table now shows that i has started off with a value of 0 and then is 

changed to 1. On line 7 the program uses arrayToSearch[i] again. As 

mentioned above, the value of i was initially set to 0 and then incremented to 1, so 

now instead of being the first item in the list (4, at index 0) arrayToSearch[i] is 

now 8 (at index 1). 
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The condition on line 7 is still false as itemToFind is still 16 and 

arrayToSearch[i] is 8. This means the code inside lines 8 to 10 still do not run. 

 

found itemToFind i arrayToSearch[i] 

False 16 0 4 

  1 8 

Step 4 

The next step in this example is very similar to Step 3. Line 12 increments the value 

of i by 1 again, which means it now has a value of 2. The loop repeats back round 

to line 6 and then the condition on line 7 is checked again. 

With the value of i now being 2, arrayToSearch[i] is now the third item in the 

list, which has a value of 15. Again, this is not equal to itemToFind, the condition 

is False and lines 8 to 10 are skipped. 

 

found itemToFind i arrayToSearch[i] 

False 16 0 4 

  1 8 

  2 15 

Step 5 
 
 
 

With lines 8 to 10 being skipped, the next line executed is line 11, where i 

increments by 1 so it has a value of 3. Just as in step 2, step 3 and step 4, i is used 

to look at the next item in the list, and this time around arrayToSearch[i] has a 

value of 16.  

Once again the condition on line 7 compares arrayToSearch[i] and 

itemToFind both of which have a value of 16. This condition is therefore True 

and so for the first time in this algorithm lines 8 to 10 are run. 

In the HINT for Step 2 it was mentioned that it is essential to keep track of any 
variables that might be changed in a loop. This loop is now in its fourth iteration, and 
for the first time lines 8 to 10 run. Line 8 is an output which is not asked for in the 

trace table, but line 9 re-assigns the value for found, so we can change the value of 

found in the trace table to True.  

Line 10 then runs for the first time in this program, and this breaks the FOR loop and 

takes us down to line 13 for the rest of the algorithm to be completed. 

At this point we can see that none of the remaining lines of code will change any of 
the variables or values required in our trace table, so the trace is now complete. 

 

found itemToFind i arrayToSearch[i] 

False 16 0 4 

  1 8 

  2 15 

  3 16 

True    
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Other possible correct trace tables 

The trace table completed in step 5 contains 4 columns, and the key factor is that all 
four columns show the values changing in the correct way. The exact placement of 
the rows and cells is not always fixed, and so there can be different layouts that are 
still correct, and it may suit different people to complete trace tables with different 
styles. Some of the other ways of completing the trace table are outlined below with 
explanations. 

Additional layout 1 

In this layout each change in a value is given a separate row in the table. This style 
shows a very clear run order, but more than double the number of rows are needed. 
With more complex algorithms, even more than this could be required. 

 
found itemToFind i arrayToSearch[i] 

False    

 16   

  0  

   4 

  1  

   8 

  2  

   15 

  3  

   16 

True    
 

Additional correct example 2 

The original trace table completed in step 5 shows when the values for each column 
change. In this additional correct example, every cell is complete, even if the value 
does not change. 

The advantage of this method is that making comparisons is clearer, but the 
disadvantage is that if the algorithm hasn’t been understood properly and changes 
need to be made, the trace table can begin to look very messy and difficult to read.   

 

found itemToFind i arrayToSearch[i] 

False 16   

False 16 0 4 

False 16 1 8 

False 16 2 15 

False 16 3 16 

True    

 

The key point to both of these additional correct examples is that the values in each 
column change in the correct way. 

 The column for found starts off as False as identified in line 3, and then is 

changed to True at the end when line 9 is executed. 

 itemToFind starts off as 16 and does not change throughout the trace 

table. 
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 i starts as 0 and continues to count to 3 in increments of 1, but does not go 

beyond 3. This is because the item we are looking for is stored at index 3 in 

the array. 

 arrayToSearch[i] starts off as 4 and then continues to show the value 

for each item one at a time until it gets to 16, but does not change again. 

Common mistakes 

There are some common mistakes that can occur when completing trace tables, 
even if the person completing the table has fully understood the algorithm. Two of 
these common mistakes are outlined below, and both provide examples based on 

the linear search algorithm with an input of 16. 
 
 
 

Auto-completing rows and values without considering when the values 
should stop changing 

In this example the person completing the trace table has identified that the loop 

could potentially count from 0 to 5, and that this will be used to cycle through each 

item in the list. Rather than tracing the values one at a time, they have assumed the 
program will continue and have completed the table without considering when the 

break may actually occur. They have also put the True value on the same row as 

the values of 4 and 16 for i and arrayToSearch[i] which, remembering the 

discussion about the flow of time in a trace table, suggests that the program set 

found to True when i was 2 and arrayToSearch[i] was 15 (alternatively the 

program could look into the future!) 

 

found itemToFind i arrayToSearch[i] 

False 16   

  0 4 

  1 8 

  2 15 

True  3 16 

  4 23 

  5 42 
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Completing columns up rather than down 

Sometimes the person completing the trace table feels like they should complete 
every cell. As shown in the second additional correct example, this can be fine if the 
columns are completed down. In this example the person has completed the table 
with gaps, and then filled in any empty spaces by filling a cell with the value below 
the space.  

 

found itemToFind i arrayToSearch[i] 

False 16 0 4 

True 16 0 4 

True 16 1 8 

True 16 2 15 

True 16 3 16 

 
Other examples 

As stated, the trace table stepped through shows how the trace table is completed for 

the value of 16. There are 3 other complete examples of this algorithm shown below, 

but with different inputs. 

Try completing the trace table for the following inputs, and then check them to see if 
you are correct. 

1 user input of 26 

2 user input of 4 

3 user input of 42 

Example: User input of 26 
 

found itemToFind i arrayToSearch[i] 

False 26 0 4 

  1 8 

  2 15 

  3 16 

  4 23 

  5 42 

Example: User input of 4  

With a user input of 4, the algorithm will complete much more quickly. 4 is the first 

item in the list, so a linear search will check that item first, set found to True and 

break out of the loop. 

found itemToFind i arrayToSearch[i] 

False 16 0 4 

True    
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Example: User input of 42  

With a user input of 42, the algorithm will take the maximum number of comparisons 

possible with the end value of found still being True. 

 

found itemToFind i arrayToSearch[i] 

False 16 0 4 

  1 8 

  2 15 

  3 16 

  4 23 

  5 42 

True    
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Teaching strategies to introduce trace tables 

One reason that trace tables often seem very challenging to students is that they are 
not introduced at an early stage of programming. Students will go through the basic 
skills required and won’t see trace tables until they are faced with more complex 
algorithms. There are many ways the concepts to build the skills to complete trace 
tables can be introduced earlier in a student’s programming development. This 
section looks at some of these using the micro:bit block language, and Python. 

Note: These activities could be created in other block languages such as Scratch, or 
other programming languages such as C# or VB.Net. The key idea is finding ways to 
introduce the concepts of variable tracing in whatever language students are first 
introduced to programming with. 

Block languages 

Example 1: The answer is always 3 

The following statement will always end with the answer 3. 

Think of a number, double it, add six, divide it in half, and subtract the number 
you started with. 

This can be created using variables with the micro:bit block language. Students can 
be given the image below and asked to complete trace tables showing how this 

challenge can be worked out. The following is an example of this with the input of 12, 

and then has 3 additional trace tables showing how the variables used in the 
program can change. 

 
 

Input: 12   Input: 4  Input: 0  Input: 3 

A B  A B  A B  A B 

12   4   0   3  

 24   8   0   6 

 30   14   6   12 

 15   7   3   6 

 3   3   3   3 
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Other micro:bit trace tables 

While the programs below may not be useful in solving specific problems, they can 
be an effective way of showing how trace tables can be completed at an early stage 
of a student’s programming development. This method also has the added benefit of 
allowing the student to complete the trace table based on the program, and then test 
the program with either the online emulator or a micro:bit to see if they have the 
correct end value. 

Example 2 

 
 

a b 

10 12 

27  

54 18 

 972 

947  
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Example 3 

The following example has added additional programming concepts in the form of an 

IF statement as well as conditions that have their own column in the trace tables. 

 

Trace table for the above algorithm with the inputs a = 6, b = 4 and c = 12 

a b c a < b 

6 4 12 False 

2 24 26  

 
Trace table for the above algorithm with the inputs a = 50, b = 60 and c = 70 

 
a b c a < b 

50 60 70 True 

110 -40 -4400  
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Example 4 

This final example adds a further programming concept in the form of a REPEAT 

loop. An index is used to count inside the loop and an OUTPUT is added to the trace 

table. 

 
 

timesTable index number OUTPUT 

2 1 2  

 2  2 

  4  

 3  4 

  6  

 4  6 

  8  

 5  8 

  10  

 6  10 

  12  

 7  12 

  14  

 8  14 

  16  

 9  16 

  18  

 10  18 

  20  

 11  20 

  22  

 12  22 

  24  

 13  24 
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Displaying trace tables in python 
 

Once students start using a text based language they can modify programs to 
include outputs of variables to include in trace tables. In a similar way to the block 
based examples, this can be a useful activity if they have to complete a trace table, 
write the program for the algorithm they have just traced, then run the program so 
they can see if their trace table is correct. 

The following code shows how you can use escape characters and string handling to 
display a trace table. The first example shows the code and the output for the same 
program used in the final micro:bit example. The second example shows the code 
and output when the modifications have been made to display the trace table as the 
program runs. 

Example of the Python code for the micro:bit Example 4 shown above. 

Example 1 code 
 

 
 

 

Example 1 output 
 

 

Example 2 code 
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Example 2 output 

To create this we've used TAB characters represented by \t inside strings (the \ is used as 

an 'escape' character to indicate that the next character isn't a literal one but an indicator of a 
non-printable character). 

The column headings are displayed with one or two TABs before the loop starts. Inside the 
loop all of the variables being traced are printed (number is printed twice because it is both 

calculated and OUTPUT). 

The f-string facility of Python lets you embed the values of variables or expressions inside a 

string simply by enclosing the name of the variable (or the text of the expression) inside { and 

}. 




