

© 2023 AQA 1 of 21

Notes and guidance: 8525/1 Marking guidance
Guidance for teachers on marking questions with a coded solution

This guidance has been produced to assist teachers and to ensure that students are treated as
fairly as possible irrespective of the programming language they have used.

General principles
In the real-world minor syntax errors are often identified and flagged by the development
environment. To reflect this, all responses in a high-level programming language will assess a
student’s ability to create an answer using precise programming commands/instructions but will
avoid penalising them for minor errors in syntax.

When marking program code, you must take account of the different rules between the languages
and only consider how the syntax affects the logic flow of the program. If the syntax is not perfect
but the logic flow is unaffected then the response should not be penalised.

The case of all program code written by students is to be ignored for the purposes of marking.
This is because it is not always clear which case has been used depending on the style and quality
of handwriting used.

Additional spaces in code can be ignored except in identifier names. See the section on
Meaningful Variable Names.

Teachers must ensure they follow the mark scheme instructions exactly.

If the intent of the student is clear from the code written then, where possible, marks should be
awarded. This applies even if the methods used are unfamiliar to you as a teacher.
Writing a program on paper is hard when you have been used to the help offered by an IDE.
From the Additional Practice Questions document:
As detailed in the mark scheme, the case of text will be ignored and indentation will only be
taken account in so far as the logic flow must be clear. Similarly, if punctuation is missing
(eg semicolons, colons etc) marks can be awarded as long as the logic is clear.
It is expected that the majority of students will give responses that are simply and easily marked,
but this guidance should help teachers to apply general principles if that is not the case.

© 2023 AQA 2 of 21

Design marks
Most questions will have some design marks available, which may be awarded even if the code
contains major errors. However, there must be some genuine and relevant attempt at writing a
program that meets the requirements of the question, eg if there are design marks available for the
use of both a selection construct and an iteration construct, merely writing:
Do
 If
 End If
Loop

should not be awarded any marks.

Marking syntax
This area will be very mark scheme dependent. It is important that the requirements of the mark
scheme for the particular question are followed to the letter.

Question Example
Write a selection statement to output the message "True" if a contains a value greater than or
equal to zero.

Example 1
If the question requires, and the mark scheme contains a mark for correctly using, a selection
statement and the student includes a syntactically correct iteration statement instead, such as (in
Python):
while a >= 0:

then the student cannot gain the mark even though the statement they have written is syntactically
correct, as it does not match the requirement of the question/mark scheme combination.

Example 2
If the mark scheme contains a separate mark for testing whether a >= 0 and the student writes
(in Python):
while a >= 0:

then the mark would be awarded even though an incorrect program statement had been used.

However, if the student had written while a > 0: then neither of the marks in the two
examples could be awarded.

© 2023 AQA 3 of 21

Additional marking syntax guidance

1. If the student writes a statement that is syntactically incorrect, eg in Python

if a >= 0 Missing :

or in VB.NET

If a >= 0 Missing Then

or in C#

if a >= 0 Missing ()

then any mark for the IF statement is still awarded as the logic and intent of the student is clear.

2. Missing spaces within a statement, eg Ifa>=0Then may be ignored — it may not be obvious
from a student's writing that spaces are there.

3. Superfluous spaces and blank lines may be ignored.
4. Where there is a Maximum n marks if any errors in code, minor errors will not be penalised,

so that, for example, missing a colon off the end of an if statement in Python, or missing the ;
off the end of a statement in C# will not be penalised.

5. Missing import (Python), using (C#) or Imports (VB.NET) statements should be ignored,
eg a student using ReadLine() or Write()/WriteLine() without the Imports
System.Console / using System.Console; statements (VB.NET/C#), or in Python
randrange or randint without an import random statement.

© 2023 AQA 4 of 21

Indentation and statement blocks

General rules for indicating block structure
For all languages, the first statement after an if/while/do/else etc should be marked as if they
were 'under the control' of the statement. For Python, statements after the first one that are not
indented correctly should be marked as not being under that control unless they are followed by
else/elif/case.

For C# this rule also applies but instead of 'are not indented' is replaced by 'are not enclosed in { }".
For VB.NET this rule also applies (if a student misses off the End If for example).

Python
If a student has consistently used their own indentation guides, eg starting an indented block half
way between indentation guides, then this should not be penalised as long as the indented levels
match up.
If a student indents too much this may be ignored as long as the indented levels match up.
If a student does not indent enough then it is possible that not all marks will be awardable as it may
be unclear what is indented and what is not. Each case will need to be marked on its merit.
It is all about the logic flow and whether the intention of the logic flow is clear enough.
For example, a password checking program requires a message to be output if the entered
password is not Bananas and the number of tries left decreased by one:

if password != "Bananas":
 print("Incorrect password.")
tries = tries - 1

would gain marks for the if statement,
test, and print statement, but not gain
marks for decrementing tries (unless
the mark scheme has a mark for this
without the usual requirement for the
statement to be executed only under all
correct circumstances)

A similar approach is taken with while and for statements.

However, when an if … elif … else: is used, then apart from the else block this rule can
be relaxed.

if guess > target:
 print("Too high.")
tries = tries + 1
elif guess < target:
print("Too low.")
tries = tries + 1
else:
print("Well done.")
print(tries, "attempts.")

would gain any marks for the if
statement, test, print statement, and
incrementing tries, but not gain marks
available for the print(tries,
"attempts.")message within the
else part (print("Well done.")
would be marked correct under the general
rule)

© 2023 AQA 5 of 21

VB.NET
Since VB.NET uses keywords (eg End If, Loop), to indicate the end of a statement block,
indentation (or the lack of it) can be ignored as long as the keyword(s) are not missing, but if
indentation is present it may be used to compensate for mistakes elsewhere, eg a missing
'bracketing' keyword after End, or even missing Ends.

C#
Since C# uses { and } braces to indicate the start and end of statement blocks, indentation (or the
lack of it) can be ignored as long as the braces are not missing, but if indentation is present it may
be used to compensate for mistakes elsewhere, eg a missing brace either at the start or the end of
the block.

If guess > target Then
Console.WriteLine("Too high.")
tries = tries + 1
Else If guess < target Then
Console.WriteLine("Too low.")
tries = tries + 1
Else
 Console.WriteLine("Well done.")
 Console.WriteLine(tries, "attempts.")
' Missing End If here
' Code continues here unindented

ignores missing indentation in
the first and second If
blocks, but the indentation in
the Else block makes up for
the lack of the End If.

If the code continued at the
same indentation as the last
two
Console.WriteLines
any marks depending on
them only being executed
under correct circumstances
could not be awarded.

if guess > target {
Console.WriteLine("Too high.");
tries = tries + 1;
} else if (guess < target) {
Console.WriteLine("Too low.");
tries = tries + 1;
else
 Console.WriteLine("Well done.");
 Console.WriteLine(tries, "attempts.");
// Missing { after else and } missing here
// Code continues here unindented

ignores missing indentation in
the first and second if
blocks, but the occurrence of
the else without the
required closing } would not
affect the marks and the
indentation in the else block
itself makes up for the lack of
the {}.

If the code continued at the
same indentation as the last
two
Console.WriteLines
any marks depending on
them only being executed
under correct circumstances
could not be awarded.

© 2023 AQA 6 of 21

Specific statement types
If a student uses an AQA pseudo-code construct that is not available in their chosen language, eg
REPEAT UNTIL, then any design mark may be awarded but no mark for the code itself.

C#
if, while, and do statements:

ignore missing parentheses around tests (this is also repeated as a similar rule in
Expressions but it's worth repeating again here.)

for and foreach statements:

Ignore omission of the type for the control variable, accept the use of var, and ignore
missing parentheses around the sections that control the loop (initialisation, condition,
iteration in for and iteration only in foreach.).

In a for statement the initialisation, condition and iteration parts must all be present,
although missing semi-colons may be ignored, eg for i=0 i<10 i++ would gain all
marks (assuming a loop from 0 to 9 or for 10 iterations were required by the question.)

VB.NET
For and For Each statements:

Ignore omission of the type for the control variable.

Python
REPEAT UNTIL loops may be coded using a standard while loop as in the Python Coding
Guide or as a while True: loop with a break at the bottom, eg

a = 1
while True:
 print(a)
 a = a + 1
 if a == 4:
 break
outputs 1, 2, 3

which is equivalent to the pseudo code

a = 1
REPEAT
 OUTPUT a
 a = a + 1
UNTIL a = 4
outputs 1, 2, 3

© 2023 AQA 7 of 21

Python 3.10 match statement

Python versions before 3.10 use the if … elif … elif … else: … structure to implement
a switch (C#) or Select Case (VB.NET) statement where a single value is tested against a
number or possibilities, eg testing a character to see if which of the four compass directions it
indicates:

if dir == "E":
 direction = "East"
elif dir == "N":
 direction = "North"
elif dir == "S":
 direction = "South"
elif dir == "W":
 direction = "West"
else:
 direction = "Invalid direction"

Starting with Python 3.10 the match statement can be used instead:

match dir:
 case "E":
 direction = "East"
 case "N":
 direction = "North"
 case "S":
 direction = "South"
 case "W":
 direction = "West"
 case _: # _ matches anything (default: C# / Case Else VB.NET)
 direction = "Invalid direction"

© 2023 AQA 8 of 21

Variable names
In all languages, once a variable is declared and/or given an initial value, accept uses of the
variable name which differ in case (only relevant for Python and C#), and minor misspellings
where the name cannot be confused with another.
For example, in Python
Total_Stock = 0
…
Totalstock = Total_stock + 1

Meaningful variable names
Where the question asks the student to use meaningful variable names consideration should be
given to the context of the question. For example, if a password were to be input twice and the
inputs compared for equality, meaningful variable names could be
password1 and password2

pwd1 and pwd2

pw1 and pw2

p1 and p2

In the last case the 1 and 2 help with adding meaning and would represent the minimum that was
creditworthy.
A student could concentrate on the fact that the second input should be a verification of the first,
and use
password and verification

Single letter variable names may be acceptable, for example in loops
for i in range(20):

or in a question involving coordinates, where x and/or y will be meaningful, but in the password
example using
a and b

would not be acceptable as meaningful variable names (they could, however, be meaningful if the
question was on Pythagoras' theorem!)
Treat hyphens as a valid break character in composite variable names, and so treat
braking-distance as braking_distance unless braking - distance is a valid
arithmetic expression.

Variable names must not contain noticeable spaces and if present they will be considered
an error except when the mark is a Design mark.

Keywords
If a keyword/type is misspelled or incorrectly cased, but is clearly correct, eg Whiel instead of
While/flaot instead of float, then the student's response should be marked as if it were
correctly spelled.

© 2023 AQA 9 of 21

Expressions
In an arithmetical/logical/string expression

• missing parentheses may be ignored provided the normal precedence rules give the correct
answer.

eg adding the cost of a number of items purchased to a running total with the statement

total = total + (price * quantity) is correct

as is total = total + price * quantity

but obviously a statement such as total = (total + price) * quantity is
incorrect.

• superfluous parentheses may be ignored as long as they do not alter the (correct) order of
evaluation.

• the use of non-standard mathematical operators (eg x instead of * for multiplication) should not
be penalised as long as the meaning is unambiguous and clear. The only potential exception to
this rule would be if a variable name was the same as the operator used and had introduced
ambiguity.

In string expressions ignore missing " around a string if the string is the only thing being output or
assigned to a variable, eg print("Hello) or name = "User1 gets any available mark but
print("Hello + name) does not.

In function calls ignore missing parentheses, eg name = input or name = input "What
is your name"

© 2023 AQA 10 of 21

Logical tests
Irrespective of the language:

allow <> , != or ≠ as the symbol for not equal to.

allow = or == as the symbol for equal to.

allow >= or ≥ as the symbol for greater than or equal to.

allow <= or ≤ as the symbol for less than or equal to.

In C# only, allow | or || (short circuiting or conditional) for logical OR, and & or && (short
circuiting or conditional) for logical AND.

C# relational tests on strings
In C# allow <, <=, >, >= when comparing strings or characters.

To compare two strings in C# and determine their order, eg, to determine if string1 comes
'before' string2, students may write code like:

int result = string1.CompareTo(string2);

or

int result = String.Compare(string1, string2);

and then compare result to 0

if (result == 0)
 Console.WriteLine("Equal");
else if (result < 0)
 Console.WriteLine($"{string1} comes before {string2}");
else if (result > 0)
 Console.WriteLine($"{string1} comes after {string2}");

Note that using these methods "A" comes after "a", ie both "A".CompareTo("a") and
String.Compare("A", "a") return 1, whereas in both VB.NET and Python "A" > "a"
returns False! This is because these methods do not just compare the codes for the individual
characters in strings but use their lexical ordering.

Output Layout
Unless the question asks for a specific output layout, eg the name of the student on one line and
their grade on the next, or the name of the student followed by a space followed by their class on
the same line, then ignore horizontal and vertical spaces in the answers.
So, in C# and VB.NET, whether they use Console.Write or Console.Writeline can be
ignored unless specifically required by the question. Similarly, the use of end="" in Python can
be ignored unless specifically required by the question.

© 2023 AQA 11 of 21

Specific language type issues

General rules for typing
Python's approach complicates things, but, to align the languages as much as possible if there is a
missing variable declaration in any of the languages which could make the code correct then mark
as if the declaration was present. Assume that any such declaration initialises the variable's value
to the 'zero' for that type, ie 0 or 0.0 for numbers, "" for strings, False for Booleans.

So, in VB.NET
Do
 password = Console.ReadLine()
 If password <> "OpenSesame" Then
 tries = tries + 1
 If tries = 3 Then
 Console.WriteLine("Too many tries. Account locked")
 OK = False
 Break
 Else
 OK = True
 Exit Do
 End If
 End If
Loop

should be marked as if the declarations
Dim password As String = ""
Dim tries As Integer = 0
Dim OK As Boolean = False

had been made at the start of the program.

© 2023 AQA 12 of 21

Python
Since Python does not type variables but only the values that variables contain, the type of the first
value assigned to a variable should be taken as the variable type if there are any marks available
for such typing, eg the following (initial) assignment to numberOfStudents 'declares'
numberOfStudents to be of type int.

numberOfStudents = 47

Subsequent assignments to a variable must be of values that are compatible with the first, eg
numberOfStudents = "There are no students in the class"

means that any marks for the typing of the variable cannot be awarded.
In Python some students may use type hints when declaring variables, parameters and function
return types. A type hint is a colon followed by the type of the values that a variable or parameter is
expected to contain, eg
unitsInStock: int = 25

def Square(n: float) -> float:
 # -> float gives the function's return type

 return n * n

If a student uses a type hint for a variable, parameter or return type the type specified by the hint
should be taken as the type of the variable and, if this is correct, any type marks awarded. Any
assignments of values incompatible with this type should be considered as errors and marked
accordingly.

VB.NET
Dim n As Integer: n = Console.ReadLine() will implicitly convert from the string
returned by Console.ReadLine() to the Integer type given to n and so is a valid way of
entering an integer (similarly if n is defined as Single, Double or even Boolean.)

Dim n = Console.ReadLine() will give n a type of string (Console.ReadLine()'s
return type) and so is not strictly a valid way of entering an integer, but if the student then goes on
to write n = n + 1 the general rule about typing and missing declarations comes into play.

Dim n = Cint(Console.ReadLine()) or

Dim n = Convert.ToInt32(Console.ReadLine())

will give n a type of integer and are both valid ways of entering an integer.

© 2023 AQA 13 of 21

C#
Students may use var to define variables which allows them to ignore giving a type to a variable if
the variable is initialized to a value. So
var i = 25;

will declare a variable i of type int. The variable must be given an initial value in the var
declaration, so
var i;

is an error.
var n = Console.ReadLine();

will give n a type of string (the return type of Console.ReadLine()). If a student then goes on
to use the value of n as if it were an integer, eg, n = n + 1; then the general typing rule should be
applied and the var n treated as if it were int n (and the implicit cast rule coming up applied). To get
an integer typed n would normally require an explicit conversion, ie

var n = Convert.ToInt32(Console.ReadLine());

If a student has explicitly typed a variable, accept an assignment of Console.ReadLine() to
that variable as performing an implicit cast to the variable type, eg accept
int a = Console.ReadLine();

as a valid way of entering an integer.
Students may add superfluous semi-colons after statements and statement parts, eg
if (a = 1) {;
};
These superfluous semi-colons can be ignored (for C# this is still a valid program unless the semi-
colon appears after the closing brace of a function definition.)

© 2023 AQA 14 of 21

Python Boolean expressions
Python’s approach to Boolean expressions is that, when needed, a value, eg a number, a string, a
list, has a ‘falsy or a ‘truthy’ interpretation which can be used as if it were a Boolean value (False
or True). These values can be used as the conditions in indefinite iteration (while) statements
and selection (if) statements.

If an integer is 0 or a float is 0.0 then it can be used as if it were False but any other non-zero
value can be used as if it were True. For example, instead of avoiding a division by zero error like
this:

if b != 0:
 print("a / b =", a / b)
else:
 print("Cannot divide by zero!")

you can write:

if b:
 print("a / b =", a / b)
else:
 print("Cannot divide by zero!")

For strings the ‘falsy’ value is the empty string ("") and anything else is ‘truthy’:

if s:
 # rather than len(s) > 0, or s != ""
 print("The first character is", s[0])
else:
 print("The string is empty")
avoids a string index out of range error

For lists, the ‘falsy’ value is the empty list and anything else is ‘truthy’:

if l:
 # rather than len(l) > 0, or l != []
 print("The first element is", l[0])
else:
 print("The list is empty")
avoids a list index out of range error

Relational operators such as and, or, and not can be used with simple values.

eg if a and b:

© 2023 AQA 15 of 21

Unlikely/Unusual programming syntax
Teachers should note that students may present unusual looking code that may in fact work
perfectly well in their chosen language.

This could be as simple as placing multiple statements on a single line such as

if a == 0: print("Hello"); print("Goodbye")

or the use of statements like
a = b = 1 # Valid in Python and C# but not in VB.NET
 # In VB.NET b has the value 1, but a the integer
 # equivalent of the Boolean value b = 1 which is 0

More unusual code might include the use of functional programming techniques or recursion.
To ensure consistency of marking where unusual/unlikely coding statements (not covered by the
mark scheme) are seen you should discuss the statement with your colleagues.

Arrays

VB.NET
When defining an array, students using VB.NET may allocate space for one more element than is
asked for since the number in an array declaration gives the highest index value, not the count of
elements in the array. For example, if a question requires counts to be kept for 1000 throws of a
die then a student may declare an array like this:
Dim counts(6) As Integer

creating an array with elements counts(0), counts(1), …, counts(6), i.e., with 7
elements. They could then use the result of a random throw (random.Next(1, 7)) as an index
directly into the element of counts to be incremented.

If the student defined the array like this:
Dim counts(5) As Integer

creating an array with elements counts(0), counts(1), …, counts(5), i.e., with 6
elements. They would then need to subtract 1 from the result of a random throw to use this as an
index but would only create the required number of array elements.
Both methods of declaring an array should be allowed, but if a student then goes on to write code
that could access a non-existent element, e.g., in the second case not subtracting 1 from the
random throw, then the answer is not completely correct and should be marked accordingly. In the
first case not accessing the first element (using index values of 1 to 6) or not accessing the last
element (using index values of 0 to 5) would be perfectly acceptable.

© 2023 AQA 16 of 21

Accessing individual characters or substrings in strings
A string can be treated as an array of characters (with indices running from 0 to one less than the
length of the string), so that in VB.NET
Dim s As String = "Hello"
Console.Writeln(s(2))

outputs a lower-case l. Python and C# can do the same thing. Some VB.NET students may have
been taught to use the Left, Mid, and Right functions, which are all acceptable, but the first
character is at position 1 not 0, so to get ell from the string s defined above would require
Mid(s, 2, 3).

Records
It is possible that students may use unusual structures to implement records, particularly in Python.
We have suggested that In C# and VB.NET structs and Structures are used, while in
Python classes should be used, eg given the car example in the Teaching guide we would
expect something like:

VB.NET

Structure Car
 Dim make As String
 Dim model As String
 Dim price As Single
 Dim doors As Integer

 Sub New(make As String, model As String,
 price As Double, doors As Integer)
 Me.make = make
 Me.model = model
 Me.price = price
 Me.doors = doors
 End Sub

End Structure

© 2023 AQA 17 of 21

C#
struct Car
{
 public string make;
 public string model;
 public double price;
 public int doors;

 public Car(String make, string model,
 double price, int doors)
 {
 this.make = make;
 this.model = model;
 this.price = price;
 this.doors = doors;
 }
}

Python
class Car:
 def __init__(self, make, model, price, doors):
 self.make = make
 self.model = model
 self.price = price
 self.doors = doors

When marking such implementations, the constructor (New, Car and _init_) may be omitted as
long as any initialisation is done field by field, eg

VB.NET
Structure Car
 Dim make As String
 Dim model As String
 Dim price As Single
 Dim doors As Integer
End Structure

Dim myCar As Car

myCar.make = "Ford"
myCar.model = "Anglia"
myCar.price = 453
myCar.doors = 4

© 2023 AQA 18 of 21

C#
struct Car
{
 public string make;
 public string model;
 public double price;
 public int doors;
}

Car myCar;

myCar.make = "Ford";
myCar.model = "Anglia";
myCar.price = 453;
myCar.doors = 4;

Python
class Car:
 pass

myCar = Car()

myCar.make = "Ford"
myCar.model = "Anglia"
myCar.price = 453
myCar.doors = 4

This simplified syntax will work but does mean that any instances of Car that are created start off
without any fields being defined, and it is only the assignment of a value to a field that creates that
field.

Thus, the following would be valid
yourCar = Car()
yourCar.mark = "Vauxhall # mark should have been make
yourCar.model = "Astra"
yourCar.price = 8600
yourCar.doors = 5

but would result in an error on the following statement
print(myCar.make, yourCar.make)

Without the declarations of the variables holding a record of type Car (Dim myCar As Car,
Car myCar;, and myCar = Car()) none of these examples work correctly and any marks
available for creating the record itself (but not its initialization to the values given) should not be
awarded.

© 2023 AQA 19 of 21

Alternative implementations
It is possible (but unlikely) that C# and VB.NET students could use classes instead of structures,
but it is far more likely that students may use alternative methods for structures in Python (the
following examples are taken from a discussion on the Computing At School Community - which
unfortunately no longer seems to be available on the site):
import types

car = types.SimpleNamespace()

car.make = "Ford"
car.model = "Anglia"
car.price = 453
car.doors = 4

print(f"{car.make}, {car.model}, {car.price}, {car.doors}")

or
from dataclasses import dataclass

@dataclass
class Car:
 make: str = "" # Initialising variables is not

essential but the type hints are
 model: str = ""
 price: float = 0.0
 doors: int = 0

car = Car()

car.make = "Ford"
car.model = "Galaxy"
car.price = 12000.0
car.no_of_doors = 5

print(car)

© 2023 AQA and its licensors. All rights reserved. 20 of 21

Examples
C#
Int speed; // Ignore case of Int
double breaking-distance; // Ignore – rather than _
string IsWet;
speed = console.readline(); // Ignore case and no cast to
 // int
while speed < 10 | spead > 50 { // Ignore missing (), accept |
 // or ||, ignore misspelling
 // of spead
 speed = console.readline() // Ignore missing ; and no cast
}
Breaking_distants = speed / 5;
Iswet = console.readline(); // Ignore misspelling of IsWet
if (iswet = "yes") // As above and accept = for ==
speed *= 1.5; // No indentation but valid
 // Compound assignment valid
Console.writeline(breaking_distance)

Python
Odd = 1
Number = int(input("Enter an integer? "))
While odd <> number # Ignore case of While, missing : and <>
 # used instead of !=
 Print(odd) # Ignore case of Print and odd
 If number < 0 # Ignore case of If and missing :
 Odd -= 2 # Compound assignments valid, ignore
 # lack of indentation
 Else:
 Odd += 2

VB.NET
dim distance as integer ' Ignore keywords/subroutine case
dim passengers as integral ' Clearly Integer so treat as such
Console.Write("What is the distance? ")
distants = console.readline() ' Clearly distance
console.write(How many passengers?) ' Ignore missing quotes
passengers=console.readline()
dim fare = 2 * passengers ' fare will be typed as an integer
 ' although 2.0 * passengers would
 ' give correct type!
far = far + 1.5 * diustance ' Clearly fare and distance again

' but since fare is an integer the
' calculation result drops any
' fractional part

console.writeline(fare)

	Examples
	C#
	Python
	VB.NET

