
© AQA 2020 1 of 20

Teaching guide: Programming challenge 2
Student scores
Programming is a fundamental skill required for success in GCSE Computer
Science. This programming challenge is designed to develop students’ programming
skills.
In the paper 1 exam, students will be required to design, write, test and refine
program code in either C#, Python (version 3) or VB.Net.

To develop their programming skills, students should have sufficient practical
experience of:

• structuring programs into modular parts with clear documented interfaces to
enable them to design appropriate modular structures for solutions

• including authentication and data validation systems/routines within their
computer programs

• writing, debugging and testing programs to enable them to develop the skills to
articulate how programs work and argue using logical reasoning for the
correctness of programs in solving specified problems

• designing and applying test data (normal, boundary and erroneous) to the testing
of programs so that they are familiar with these test data types and the purpose
of testing

• refining programs in response to testing outcomes.

© AQA 2020

2 of 20

Programming Challenge 2 - Student scores

Exercise 1
This exercise can be solved using iteration. The validation could be implemented in
different ways. The basic example solution in Figure 1 uses the int function, so the
program will crash if anything other than an integer is entered. Simple IF statements
are then used to check the range of the number and if an invalid input is found the
program stops. Students can be encouraged to think how to create a program that
will produce an error message but not crash or stop. They can also explain how they
would test the program.

Another example solution is shown in Figure 2, which uses a Python function to
validate the input and check for a number, and a nested WHILE loop to keep the
program running until correct input is entered.

Figure 3 shows an example using a subroutine to validate input.

Specification coverage: sections 3.2.1, 3.2.6, 3.2.7, 3.2.10 and 3.2.11

Figure 1

##########################
AQA Student Scores #
##########################

print("Welcome to AQA Student Scores")

runningTotal = 0

print("Please enter 10 student scores")

Loop that will be executed 10 times only
for i in range(10):
 userInput = int(input("Student score: "))
 if userInput > 10:
 print("Your number must be 10 or less")
 break
 if userInput < 0:
 print("Your number must be 0 or greater")
 break

 runningTotal = runningTotal + userInput
End of for loop

average = runningTotal / 10
print("Average = " + str(average))

End of program

© AQA 2020

3 of 20

Figure 2

##########################
AQA Student Scores #
##########################

print("Welcome to AQA Student Scores")

runningTotal = 0

print("Please enter 10 student scores")

Loop that will be executed 10 times only
for i in range(10):
 while True:
 userInput = input("Student score: ")
 if not userInput.isnumeric():
 print("You must enter a positive whole number")
 else:
 score = int(userInput)
 if (score >= 0) and (score <= 10):
 runningTotal = runningTotal + score
 break
 else:
 print("Your number must be between 0 and 10")
 # End of while loop
End of for loop

average = runningTotal / 10
print("Average = " + str(average))

End of program

© AQA 2020

4 of 20

Figure 3

##########################
AQA Student Scores #
##########################

def validate(userInput):
 while True:
 if not userInput.isnumeric():
 print("You must enter a positive whole number")
 else:
 score = int(userInput)
 if (score >= 0) and (score <= 10):
 return score
 else:
 print("Your number must be between 0 and 10")
 userInput = input("Student score: ")
 # End of while loop

print("Welcome to AQA Student Scores")

runningTotal = 0

print("Please enter up to 10 student scores ")

Loop that will be executed 10 times only
for i in range(10):
 userInput = input("Student score: ")
 runningTotal = runningTotal + validate(userInput)
End of for loop

average = runningTotal / 10
print("Average = " + str(average))

End of program

© AQA 2020

5 of 20

Exercise 2
The example solution in Figure 4 was used to produce the output in Exercise 2.
Students may modify any version of the program created in Exercise 1, or may
produce a completely new program, with a menu.

Specification coverage: section 3.2.11

Figure 4

##########################
AQA Student Scores #
##########################

print("Welcome to AQA Student Scores")

runningTotal = 0
scoreCount = 0

print("Please enter your student scores or x for the average")

Loop that will be executed until x is entered
while True:
 userInput = input("Student score: ")
 if userInput == "x":
 break
 else:
 if not userInput.isnumeric():
 print("You must enter a positive whole number")
 else:
 score = int(userInput)
 if (score >= 0) and (score <= 10):
 runningTotal = runningTotal + score
 scoreCount = scoreCount + 1
 else:
 print ("Your number must be between 0 and 10")
End of while loop

if scoreCount > 0:
 average = runningTotal / scoreCount
 print("Average = " + str(average))
else:
 print("No scores entered")

End of program

© AQA 2020

6 of 20

Exercise 3
The student can take any version of the program they have developed. This gives an
opportunity to look at conditional statements and logic. Figure 5 is an example using
a combination of code shown in Figure 3 and Figure 4. This program is a good
example of how developing a trace table can help in designing and testing a
program.

Specification coverage: sections 3.2.2 and 3.2.11

Figure 5

##########################
AQA Student Scores #
##########################

def validate():
 while True:
 userInput = input("Student score: ")
 if userInput == "x":
 return STOP_CODE
 else:
 if not userInput.isnumeric():
 print("You must enter a positive whole number")
 else:
 score = int(userInput)
 if (score >= 0) and (score <= 10):
 return score
 else:
 print("Your number must be between 0 and 10")

 # End of while loop

print("Welcome to AQA Student Scores")

runningTotal = 0
scoreCount = 0
lowestScore = 11
highestScore = -1

Create a ‘constant’ for indicating when data entry has ended.
Note in Python true constants do not exist so it is conventional
to create a variable with an identifier in all caps to signify
it is a constant value that does not change and should not be
changed in the program

STOP_CODE = -2

print("Please enter your student scores or x to calculate average")

© AQA 2020

7 of 20

Extension
The C# and VB.NET examples below use structures to store the student data as
records. In Python there are many options for creating a record: lists, dictionaries,
tuples and classes. Our preferred method would be to create a new class called
Student, as covered in the teaching guide: Data Structures (Records). Even
though object orientation is not on the GCSE specification this method is very simple
to understand and teach and pupils do not need to know anything about OOP to use
it in this context.

The example in Figure 6 shows an example of how this could be implemented in
Python. Figures 7 and 8 show how the same program might be implemented in
VB.NET and C#

Loop that will be executed until x is entered
while True:
 score = validate()
 if score == STOP_CODE:
 break
 else:
 userInput = input("Please enter the student first name: ")
 if score > highestScore:
 highestName = userInput
 highestScore = score
 if score < lowestScore:
 lowestName = userInput
 lowestScore = score
 runningTotal = runningTotal + score
 scoreCount = scoreCount + 1

End of while loop

if scoreCount == 0:
 print("No student scores have been entered")
else:
 average = runningTotal / scoreCount
 print("The student with the highest score is " + highestName)
 print("with " + str(highestScore))
 print("The student with the lowest score is " + lowestName)
 print("with " + str(lowestScore))
 print("Average = " + str(average))

End of program

© AQA 2020

8 of 20

Figure 6 (Python 3 Version)

##########################
AQA Student Scores #
##########################

class Student():
 def __init__(self, name, score):
 self.name = name
 self.score = score

def validate():
 while True:
 userInput = input("Student score: ")
 if userInput == "x":
 return STOP_CODE
 else:
 if not userInput.isnumeric():
 print("You must enter a whole number")
 else:
 score = int(userInput)
 if (score >= 0) and (score <= 10):
 return score
 else:
 print("Your number must be between 0 and 10")

def printStudents(students):
 for student in students:
 print('\n' + student.name + " has score " + str(student.score))

© AQA 2020

9 of 20

def getScore(student):
 return int(student.score)

def findScore(studentName, students):
 for student in students:
 if student.name == studentName:
 return student.score

 return STOP_CODE

def addScores():
 students = []
 print("Please enter your student scores or x to end")

 while True:
 score = validate()
 if score == STOP_CODE:
 break
 else:
 name = input("Enter the student first name: ")
 students.append(Student(name, score))
 return students

Main program

STOP_CODE = -2

print("Welcome to AQA Student Scores")

while True:
 print("")
 print("###")
 print("Please enter a menu choice")

© AQA 2020

10 of 20

 print("Enter 1 to enter student scores")
 print("Enter 2 to sort and print student scores")
 print("Enter 3 to find a student's score")
 print("Enter 4 to quit the program")
 print("###")
 menuItem = input("Menu choice: ")
 if menuItem == '1':
 print("Add scores")
 students = addScores()
 print("Added Students: ")
 printStudents(students)
 elif menuItem == '2':
 students.sort(key=getScore)
 print("Sorted students")
 printStudents(students)
 elif menuItem == '3':
 studentName = input("Enter student name to find: ")
 studentScore = findScore(studentName, students)
 if studentScore != STOP_CODE:
 print("Student " + studentName)
 print("has a score of " + str(studentScore))
 else:
 print(studentName + " not found")
 elif menuItem == '4':
 break
 else:
 print("Unknown option selected!")

© AQA 2020

11 of 20

Figure 7 (VB.NET Version)

Imports System

Module Program
 '##########################
 '# AQA Student Scores #
 '##########################

 Const STOP_CODE = -2
 Const MAX_STUDENTS = 100

 Structure Student
 Dim name As String
 Dim score As Integer
 End Structure

 Dim students(MAX_STUDENTS) As Student

 Function validate() As Integer
 Do
 Console.Write("Student score: ")
 Dim userInput As String = Console.ReadLine()
 If userInput = "x" Then
 Return STOP_CODE
 Else
 If Not userInput.All(AddressOf Char.IsDigit) Or userInput = "" Then
 Console.WriteLine("You must enter a positive whole number")
 Else
 Dim score As Integer = Convert.ToInt32(userInput)
 If (score >= 0) And (score <= 10) Then
 Return score
 Else

© AQA 2020

12 of 20

 Console.WriteLine("Your number must be between 0 and 10")
 End If
 End If
 End If
 Loop
 End Function

 Sub printStudents(students() As Student)
 For Each student In students
 If student.name <> "" Then
 Console.WriteLine(Environment.NewLine + student.name + " has score " + student.score.ToString())
 End If
 Next
 End Sub

 Sub addScores(students() As Student)
 Dim scoreCount As Integer = 0

 Console.WriteLine("Please enter your student scores or x to end")

 Do
 Dim score As Integer = validate()
 If score = STOP_CODE Then
 Exit Do
 Else
 Console.Write("Enter the student first name: ")
 Dim studentInput As String = Console.ReadLine()
 students(scoreCount).name = studentInput
 students(scoreCount).score = score
 End If
 scoreCount = scoreCount + 1
 Loop
 End Sub

© AQA 2020

13 of 20

 Function getScore(stud As Student) As Integer
 Return Convert.ToInt32(stud.score)
 End Function

 Function findScore(studentName As String, students() As Student) As Integer
 For Each student In students
 If student.name = studentName Then
 Return student.score
 End If
 Next
 Return STOP_CODE
 End Function

 'Main program

 Sub Main(args() As String)
 Console.WriteLine("Welcome to AQA Student Scores")

 Do
 Console.WriteLine("")

 Console.WriteLine("##")
 Console.WriteLine("Please enter a menu choice")
 Console.WriteLine("Enter 1 to enter student scores")
 Console.WriteLine("Enter 2 to sort and print student scores")
 Console.WriteLine("Enter 3 to find a student's score")
 Console.WriteLine("Enter 4 to quit the program")

 Console.WriteLine("##")
 Console.Write("Menu choice: ")
 Dim menuItem As String = Console.ReadLine()
 Select Case menuItem

© AQA 2020

14 of 20

 Case "1"
 Console.WriteLine("Add scores")
 addScores(students)
 Console.WriteLine("Added students: ")
 printStudents(students)
 Case "2"
 students = students.OrderBy(Function(c) c.score).ToArray()
 Console.WriteLine("Sorted students")
 printStudents(students)
 Case "3"
 Console.Write("Enter student name to find: ")
 Dim studentName As String = Console.ReadLine()
 Dim studentScore As Integer = findScore(studentName, students)
 If studentScore <> STOP_CODE Then
 Console.Write("Student " + studentName)
 Console.WriteLine(" has a score of" + Str(studentScore))
 Else
 Console.WriteLine(studentName + " not found")
 End If
 Case "4"
 Exit Do
 Case Else
 Console.WriteLine("Unknown option selected!")
 End Select
 Loop
 End Sub
End Module

© AQA 2020

15 of 20

Figure 8 (C# Version)

using System;
using System.Linq; // This module is required in C# but not in VB.NET

namespace CS_StudentScores
{
 class Program
 {
 // ##########################
 // # AQA Student Scores #
 // ##########################

 public struct Student
 {
 public string name;
 public int score;

 public Student(string name, int score)
 {
 this.name = name;
 this.score = score;
 }
 }

 const int STOP_CODE = -2;
 const int MAX_STUDENTS = 100;

 static Student[] students = new Student[MAX_STUDENTS];

 static public int Validate()
 {
 while (true)

© AQA 2020

16 of 20

 {
 Console.Write("Student score: ");
 string userInput = Console.ReadLine();
 if (userInput == "x")
 {
 return STOP_CODE;
 }
 else
 {
 if ((!userInput.All(char.IsDigit)) || (userInput == ""))
 {
 Console.WriteLine("You must enter a positive whole number");
 }
 else
 {
 int score = Convert.ToInt32(userInput);
 if ((score >= 0) && (score <= 10))
 {
 return score;
 }
 else
 {
 Console.WriteLine("Your number must be between 0 and 10");
 }
 }
 }
 }
 }

 static public void PrintStudents(Student[] students)
 {
 foreach (Student student in students)
 {

© AQA 2020

17 of 20

 if (student.name != null)
 Console.WriteLine($"{student.name} has score {student.score}");
 }
 }
 }

 static public void AddScores(Student[] students)
 {
 int scoreCount = 0;

 Console.WriteLine("Please enter your student scores or x to end");

 while (true)
 {
 int score = Validate();
 if (score == STOP_CODE)
 {
 return;
 }
 else
 {
 Console.Write("Enter the student first name: ");
 string studentInput = Console.ReadLine();
 students[scoreCount] = new Student(studentInput, score);
 }
 scoreCount = scoreCount + 1;
 if (scoreCount == MAX_STUDENTS)
 {
 Console.WriteLine("You cannot enter any more students");
 return;
 }
 }
 }

© AQA 2020

18 of 20

 static public int getScore(Student student)
 {
 return Convert.ToInt32(student.score);
 }

 static public int FindScore(string studentName, Student[] students)
 {
 foreach (Student student in students)
 {
 if (student.name == studentName)
 {
 return student.score;
 }
 }
 return STOP_CODE;
 }

 // Main program
 static void Main(string[] args)
 {
 Console.WriteLine("Welcome to AQA Student Scores");

 while (true)
 {
 Console.WriteLine("");
 Console.WriteLine("###");
 Console.WriteLine("Please enter a menu choice");
 Console.WriteLine("Enter 1 to enter student scores");
 Console.WriteLine("Enter 2 to sort and print student scores");
 Console.WriteLine("Enter 3 to find a student's score");
 Console.WriteLine("Enter 4 to quit the program");
 Console.WriteLine("###");

© AQA 2020 19 of 20

Console.Write("Menu choice: ");
string menuItem = Console.ReadLine();
switch (menuItem)
{

case "1":
Console.WriteLine("Add scores");
AddScores(students);

 Console.WriteLine("Added students: ");
 PrintStudents(students);

break;
case "2":

students = students.OrderBy(Student => Student.score).ToArray();
Console.WriteLine("Sorted students");

 PrintStudents(students);
break;

case "3":
Console.Write("Enter student name to find: ");
string studentName = Console.ReadLine();
int studentScore = FindScore(studentName, students);
if (studentScore != STOP_CODE)
{

Console.Write($"Student {studentName} has a score of {studentScore}");
}
else
{

Console.WriteLine($"{studentName} not found");
}

 break;
case "4":

return;
default:

Console.WriteLine("Unknown option selected!");
break;

© AQA 2020 and its licensors. All rights reserved. 20 of 20

}
}

}
 }
}

