GCSE
DESIGN AND TECHNOLOGY

Mark scheme

Specimen Papers

Version number 1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student's answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student's answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

Qu	Part	Marking guidance	Total marks	AO

SECTION A

| 1 | D Motion sensor | 1 mark | AO4 |
| :--- | :--- | :--- | :--- | :--- |

| 2 | A Compression | 1 mark | AO4 |
| :--- | :--- | :--- | :--- | :--- |

3	C Low carbon steel	1 mark	AO4

4	D Just in Time Manufacturing	1 mark	AO4

| 5 | A Balsa is a natural material used in model making | 1 mark | AO4 |
| :--- | :--- | :--- | :--- | :---: |

| 6 | C A material that reacts to changes in the environment | 1 mark | AO4 |
| :--- | :--- | :--- | :--- | :--- |

| 7 | D Planned obsolescence | 1 mark | AO4 |
| :--- | :--- | :--- | :--- | :--- |

| 8 | C Polyester Resin (PR) | 1 mark | AO4 |
| :--- | :--- | :--- | :--- | :--- |

9	C 40mm	1 mark	AO4
10	D Spruce	1 mark	AO4

11	1 mark for each property correctly identified up to a maximum of 2 marks. Indicative content: Properties of natural fibres to make them suitable for clothing include: - Thermal properties - absorbency for dyeing - soft handle - good drape - can be washed and ironed You should accept any other valid response.	$\stackrel{2}{\text { marks }}$	AO4

12	1 mark for each correct reason stated up to a maximum of 2 marks. Indicative Content: - Strength to weight ratio so that it can be easily carried but supports the weight of the pizza - Low cost in comparison to other packaging materials which makes it cost effective for retailers - Can be printed on so takeaways and restaurants can display their logos - Rigid materials that won't flex and bend as easily as other types of cardboard - offers protection to the pizza. - Thermal properties - keep pizza warm. You should accept any other valid response.	$\stackrel{2}{2} \text { marks }$	AO4

13	1	1 mark for each correct reason identified up to a maximum of 2 marks. - Government targets to reduce CO2 emissions - Increased awareness of environmental issues - Impact of pressure groups - Home installation of solar panels - inducements for these - Minimising reliance on fossil fuels - Improved efficiency over time - Improved technology You should accept any other valid response.	$\begin{gathered} 2 \\ \text { marks } \end{gathered}$	AO4

13	2	1 mark for a valid reason 2 marks for a valid and explained reason or two valid reasons given Indicative content: - Cost (1mark) High initial investment and long payback period (2 marks) - Visual intrusion (1 mark). Wind and solar farms spoil the landscape and impacts on views (2 marks). - Noise pollution (1 mark). Sound of wind turbines will impact upon local residents (2 marks). - Climate change deniers (1mark). People do not believe there is a need to avoid traditional sources of energy (2 marks). - Efficiency (1 mark). Although the technology is improving not sufficient energy generated compared to the cost of installation etc. (2 marks). - Danger to wildlife (1 mark). Risk to bird and marine life through disturbance of habitat (2 marks). Reward for any other correct response.	$\stackrel{2}{\text { marks }}$	AO4

13	3	$1: 10=1+10=11$ $83.3 \div 11=7.572$ Answer $=7.6$ TWh Accept answer without TWH Do not accept an answer to two decimal points. (1 mark)	marks	AO4

SECTION B

Indicative content:
The following are not model answers but show some areas of the answer that may be explored. Credit both diagrams and description. Each stage must be relevant to the stock form selected.

Acrylic rod	Corrugated card	Aluminium sheet	Wool yarn	MDF board
- Crude oil is extracted from the ground - Oil is transported by a tanker to an oil refinery - Oil is put through a distillation process where heavy crude oil is separated into groups called 'fractions'. - Polymerisation takes place - Plastic is then extruded and then cut into small pellets.	- Trees are cut down and debarked - Timber is chipped and water and chemicals are added to create pulp - The pulp is then washed, refined cleaned and sometime s bleached - Water is then drained out and the paper is heated and dried. It is then wound onto large rolls.	- The bauxite is mined from the ground - This material is then washed to remove the clay - Aluminium oxide is then extracted from the bauxite through refining. - Aluminium is then created from an electrolytic process - The liquid aluminium is cast into different shapes depending on the intended use.	- Sheep are sheared to remove the wool fleece - The fleece is then cleaned, sometimes using an acid bath to remove oils and dirt - The wool is then dried and teased/pick ed - The wool is then combed in a process called 'carding' - The wool is then spun and often twisted to make useable yarn.	- Trees are cut down and then debarked - The wood is then chipped into small pieces - They are then cleaned and pulped turning softwood chips in to wood fibres - Urea formaldehy de is added to the mixture and the material is pressed into sheets - These sheets are then dried, trimmed and sanded.

$\left.$	process when producing many of the same
product.	
A guillotine is used to separate sheets after	
printing. This is a continuous process. This	
ensures products are all the same and	
allows for automatic collation the end of	
production.	
Manufacture can be totally automated.	\(\left

available in large quantities.

Products can be nested together on large

sheets of cotton to minimise waste.

Automated machines can cut patterns in

material to ensure repeatability and

consistency. Several layers of cotton can be

cut at the same time.

Simple design ensures costs are kept to a

minimum.

Screen printing allows T shirts to be printed

on and then the same design to be used

multiple times.\end{array}\right|\)| PCBs are always produced to a standard |
| :--- |
| grid and standard components are designed |
| to fit into that grid. |
| Miniaturisation requires automated |
| processes as components are small and will |
| be too difficult to handle. |
| Automated processes, such as flow |
| soldering, are used to increase production |
| speed. |
| ICs are used to make complex tasks |
| completed with the smallest space |
| necessary. |
| Spaces in the PCB are always the same to |
| allow for easy assembly. |
| PCB's are printed rather than using wires. | \right\rvert\, | Flat manmade boards such as MDF, |
| :--- |
| Plywood and chipboard are often used to |
| ensure a uniform board, thereby making it |
| more suitable for mass production. Because |
| it is flatpack it reduces costs associated with |
| assembly, storage and transport. Computer |
| Aided Manufacture such as CNC routers can |
| be used on the product to ensure |
| repeatability. Products can then be cut and |
| holes etc. can be located exactly so that |,

| | | minimal work is needed in assembly. Holes
 etc. are positioned so that alternative
 features can be added and the furniture
 becomes flexible in terms of its function. |
| :--- | :--- | :--- | :--- |
| Reward any other valid responses.
 Responses must relate to suitability for mass production. | | |

Indicative content:

The following descriptions of possible processes are not exhaustive and other points can be used to gain maximum marks. Notes should be supported with labelled diagrams.

Car Door - Press Forming

A punch and die is used to press sheet metal into shape. This means using a ductile material as the process is done at room temperature.
Holes can be cut at the same time as shapes are pressed in to the metal.
Polymer toy Musical Instrument - Injection Moulding
A polymer is placed in the hopper and enters the chamber of the injection moulding machine. The chamber is heated until the plastic melts. The plastic is then forced in to a mould where it cools to create the shape of the object.

Newspaper - Lithography
Aluminium plates are exposed to UV light and then put on rollers. The rollers pick up ink where the plate has been exposed and water elsewhere. The rollers then transfer the image on to the paper that passes through.

T - Shirt - screen printing
This is a low cost process where mesh is used to transfer ink on to the fabric. Areas are blocked out with a stencil where the ink should not go. A blade or squeegee is moved across the screen to fill the open mesh apertures with ink.

Printed Circuit Board - Soldering

The circuit board is passed over a pan of molten solder in which a pump produces an upwelling of solder. As the circuit board makes contact with this wave, the components become soldered to the board. Sometimes, the components are glued onto the surface of a printed circuit board (PCB) before being run through the molten solder wave.

Flatpack Furniture - CNC Router

Items are secured in place on the router using clamps or a vacuum bed. The file is sent to the router and different lines are set to different depths of cuts. The router then cuts the lines drawn at varying depths and with great accuracy.

If a student has named and described a process that relates to a different product from the one they selected in 16.1, or a process different from the indicative content, credit should still be awarded.

SECTION C

19	1,2,3	Award up to 4 marks for each of the three parts of the question as follows:			AO3
		3-4 marks	Well described and justified analysis containing full evaluation, drawing conclusions having considered both positive and negative factors.		
		1-2 marks	Brief points mentioned but not fully explained. Analysis present but limited evaluation / conclusions drawn. May have focused solely on either positive or negative factors.		
		0 marks	Nothing worthy of credit.		
		Allow positive a following types Indicative cont	nd negative responses. Responses may include the of answer.		
		Suitability for the user	- Waterproof which allows for use when outdoors and does not absorb sweat. - Clear display screen which is easy to read even when moving. - Flat surface which will not snag on clothing - Useful features such as GPS which will allow the user to record their location and distance travelled. - Flat screen susceptible to reflection - Screen can scratch easily		
		Aesthetic Quality	- Black in colour which is neutral and sophisticated which will appeal to an adult target market. - A plain colour that will not date/go out of fashion and appropriate for a wide range of settings - Brightly coloured icons on the screen that are attractive and easy to recognise - Geometric, simple styling that can be worn by men or women. - Black is a boring colour that will not excite - Square shape face may not appeal to all users		
		Ergonomics	- Strap has a number of holes to allow the size to be adjusted. - Touch screen makes controls easy to operate when running - Watch is lightweight so is comfortable when worn - Symbols are used on the screen and are clear and easy to see even when glanced at. - Waterproof strap which can become uncomfortable as is not breathable.		

20	1	Award marks as follows:		4 marks	AO4
		3-4 marks	Student demonstrates a clear knowledge of what anthropometrics is and good understanding of why it is important for designers to consider, bringing in relevant points to illustrate this, as per the indicative content below.		
		1-2 marks	Student demonstrates knowledge of what anthropometrics is but understanding of its importance is limited and points to illustrate this may not be given.		
		0 marks	Nothing worthy of credit.		
		Indicative co Anthropometri Designers ne	ent is the study of human measurements. to consider anthropometric data in order to:		
		- ensu - ensu - ensur - ensu - allow	hat wearable items fit hat products are comfortable hat products are easy to use hat products are suitable for their intended user products to be adjusted within a range		

20	2	Award 1 mark for each valid m Award 1 mark for each reason Indicative content is given below any other valid responses.	ure up to a maximum of 2 marks. to a maximum of 2 marks. this is not an exhaustive list. Reward Reason So the strap can be designed to fit a range of measurements So the strap can be designed to fit a range of measurements So that the buttons are not too close together and can be easily pressed.	$\begin{aligned} & 4 \\ & \text { marks } \end{aligned}$	AO4

21	1	1 mark for two correct percentages. $102 \div 240 \times 100=42.5 \%$ $30 \div 240 \times 100=12.5 \%$ (or find it by addition of other percentages and subtract from 100)	$\begin{gathered} 1 \\ \text { mark } \end{gathered}$	AO4
21	2	1 mark for calculating angle of sector; i.e. $102 \div 240 \times 360=153$ degrees Or $30 \div 240 \times 360=45 \text { degrees }$ Other methods are acceptable and should be credited. 1 mark for measuring angle and drawing sector correctly. Angles for each sector has to be correct to within a tolerance of $+/-2$ degrees If calculations are incorrect in question 21.1, errors can be carried over and credit should be given here for presenting data correctly. Shading does not need to be included in order to achieve full marks. Preferred colour scheme according to $\mathbf{2 4 0}$ children aged between 9 and 11 years	$\begin{gathered} 2 \\ \text { marks } \end{gathered}$	AO4

11 mark for each change or addition to the specification.

Indicative content:

- The product must be smaller in size so that it fits on the wrist of a child aged between 9 and 11 and is not too bulky for them.
- The product should be simple to operate with simple features that are easily accessible to children.
- The product should contain cyber safety features to ensure the child is not put at risk by using it.
- The product should be interesting and engaging for children to encourage them to use it; e.g. by containing logos / images on the

		strap. - The product must have tracking feature so parents can track children's whereabouts. - The product could have mini-games to provide entertainment for children. - Greater range of strap adjustment because children likely to grow significantly between ages of 9 and 11 . Award any other valid points.		
22	2	3 marks Clear understanding of the use of a design specification including clear reference to its use in evaluation and how this helps ensure a successful outcome. 2 marks Some understanding of what a design specification is and some reference to evaluating the final product and how this impacts on the success of the outcome. 1 mark Basic understanding of the use of a design specification but does not refer to evaluating the final outcome or the impact this has on its success. 0 marks Nothing worthy of credit. Indicative content: A design specification is important because: - It allows a designer to summarise any research - It provides a clear criteria from which to work - It provides a point of agreement between the designer and the client - It provides a clear focus for the designer in terms of what they want to achieve A design specification helps to ensure a successful outcome because: - It allows a designer to modify their design as part of the iterative design process - It provides a criteria against which to test iterations of the prototype - It allows a designer to evaluate the success of their final outcome Award any other valid responses.	$\begin{gathered} 3 \\ \text { marks } \end{gathered}$	AO4
23	1	1 mark for an appropriate answer. Indicative content: - Corrugated card - Grey board	$\begin{gathered} 1 \\ \text { mark } \end{gathered}$	AO4

25	1	1 mark awarded for showing how ten triangles could fit on the grid (given that one triangle is already provided on the grid). An example of the possible layout is shown below. Other correct responses should be rewarded. Triangles do not need to be drawn accurately but it must be clear how they fit on the grid.	1 mark	AO4

1 mark for calculating the area of a rectangle.
1 mark for calculating the area of a triangle.
1 mark for adding the areas of the triangles together and subtracting from the area of the rectangle to find wastage.

Please note if students has not answered question 25.1 correctly they will be unable to obtain the third mark.

Calculation

Area of rectangle: $\quad 60 \times 40=2400$
Area of triangle: $\quad 1 / 2 \times 18 \times 18=162$
Area of 10 triangles: $162 \times 10=1620$
Material wasted: $\quad 2400-1620=780 \mathrm{~mm}^{2}$

