

GCSE Maths

Summer Hub network meetings

Example questions and mark schemes

Published: June 2018

Contents

Contents	Page
June, Paper 3, Foundation Tier, Question 21	4
June, Paper 3, Foundation Tier, Question 18	7
November, Paper 2, Higher Tier, Question 24	12
Practice papers set 3, Paper 2, Foundation Tier, Question 16(a)	14
Practice papers set 3, Paper 2, Higher Tier, Question 6(b)/Foundation Tier, Question 22(b)	15
Practice papers set 3, Paper 2, Higher Tier, Question 17	17
June, Paper 2, Higher Tier, Question 15(a)	19
November, Paper 1, Foundation Tier, Question 21(a)	21
November, Paper 2, Higher Tier, Question 21(b)	23
Practice papers set 3, Paper 2, Higher Tier, Question 21(a)	25
June, Paper 3, Foundation Tier, Question 13(b)	27
November, Paper 2, Foundation Tier, Question 13(b)	29
June, Paper 3, Foundation Tier, Question 24(b)	30
Practice papers set 3, Paper 3, Foundation Tier, Question 19(b)	32
Practice papers set 3, Paper 1, Foundation Tier, Question 23(b)	33
Level 3 Mathematical Studies 2017, Paper 1, Question 4	34

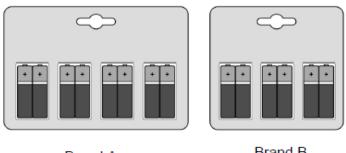
Contents	Page
New Level 2 Certificate Further Maths, Specimens, Paper 2, Question 21	36
New Level 2 Certificate Further Maths, Specimens, Paper 1, Question 19	37
New AS Maths, Specimens, Paper 1, Question 6	38
New AS Maths, Practice Paper Set 2, Question 5 (draft)	39
New AS Maths, Specimens, Paper 1, Question 15 (b)	40
New AS Maths, Specimens, Paper 1, Question 11	42
New AS Maths, Specimens, Paper 2, Question 7	43
New AS Maths, Specimens, Paper 2, Question 8	44
New A-level Maths, Specimens, Paper 1, Question 15	45
New A-level Maths, Specimens, Paper 3, Question 15	46

Remaining questions are all in the A-level Maths 'The thinking behind great assessment' booklet.

June, Paper 3, Foundation Tier, Question 21

Purple paint is made by mixing red paint and blue paint in the ratio 5:2Yan has 30 litres of red paint and 9 litres of blue paint.What is the maximum amount of purple paint he can make?

[3 marks]


Question	Answer	Mark	Comments	
	Alternative method 1			
	Any correct scaling of the ratio 5 : 2 eg 10 (:) 4 or 20 (:) 8 or 25 (:) 10	M1	oe	
	22.5 (:) 9 or 22.5 (red) or 30 (:) 12 or 12 (blue)	M1dep	oe	
	31.5 or $31\frac{1}{2}$ or $\frac{63}{2}$	A1		
	Alternative method 2			
	9 ÷ 2 or 4.5 or 30 ÷ 5 or 6	M1	oe 2 ÷ 9 or 0.22 5 ÷ 30 or 0.16 or 0.17	
21	5 × their 4.5 or 22.5 or 7 × their 4.5 or 2 × their 6 or 12 or 7 × their 6 or 42	M1dep	oe	
	31.5 or $31\frac{1}{2}$ or $\frac{63}{2}$	A1		
	Alternative method 3			
	$\frac{2}{7} \times \text{purple} = \text{blue}$ $\frac{5}{7} \times \text{purple} = \text{red}$	M1	oe $\frac{2}{7} \times \text{purple} = 9$ $\frac{5}{7} \times \text{purple} = 30$	
	$9 \times \frac{7}{2}$ or $30 \times \frac{7}{5}$ or 42	M1dep	oe	
	31.5 or $31\frac{1}{2}$ or $\frac{63}{2}$	A1		

Additional Guidance continues on the next page

	Additional Guidance			
	28 + 3.5 = 31.5	M1M1A1		
	28 + 3.5	M1M1A0		
	31.5, answer 31	M1M1A1		
	31.5 + 42 = 73.5	M1M1A0		
21	10 4	M1M0A0		
cont	10, 4	M1M0A0		
	10 + 4	M1M0A0		
	'He has 2.5 times more red than blue'	M1M0A0		
	2.5 : 1	M1M0A0		
	2.5	MOMOAO		
	28 on its own	MOMOAO		

June, Paper 3, Foundation Tier, Question 18

18 A shop sells two brands of battery.

Brand A Pack of 8 Price £3.60 Brand B Pack of 6 Price £2.94

One brand A battery powers a toy for 5 hours.

One brand B battery powers the same toy for $5\frac{1}{2}$ hours.

Which brand is better value?

You must show your working.

[5 marks]

Question	Answer	Mark	Comments	
	Alternative method 1 of 6 – cost per hour			
	3.6(0) ÷ 8 or (0).45		360 ÷ 8 or 45	
	or	M1	or	
	2.94 ÷ 6 or (0).49		294 ÷ 6 or 49	
	their (0).45 ÷ 5 or (0).09		their 45 ÷ 5 or 9	
	or	M1dep	or	
	their (0).49 ÷ 5.5 or (0).08(9)		their 49 ÷ 5.5 or 8.(9)	
	their (0).45 ÷ 5		their 45 ÷ 5	
	and	M1dep	and	
	their (0).49 ÷ 5.5		their 49 ÷ 5.5	
	(£)0.09 and (£)0.08(9)	A1	9(p) and 8.(9) (p)	
	brand B	A1ft	ft correct decision for their values with M3 scored	
18	Alternative method 2 of 6 – cost per hour from price of pack			
	8 × 5 or 40			
	or	M1		
	6 × 5.5 or 33			
	3.6(0) ÷ their 40 or (0).09		360 ÷ their 40 or 9	
	or	M1dep	or	
	2.94 + their 33 or (0).08(9)		294 + their 33 or 8.(9)	
	3.6(0) ÷ their 40		360 ÷ their 40	
	and	M1dep	and	
	2.94 ÷ their 33		294 ÷ their 33	
	(£)0.09 and (£)0.08(9)	A1	9(p) and 8.(9) (p)	
	brand B	A1ft	ft correct decision for their values with M3 scored	

Alternative method 3 continues on the next page

Question	Answer	Mark	Comments	
	Alternative method 3 of 6 – number of hours per unit cost from number of batteries			
	3.6(0) ÷ 8 or (0).45		360 ÷ 8 or 45	
	or	M1	or	
	2.94 ÷ 6 or (0).49		294 ÷ 6 or 49	
	5 ÷ their (0).45 or 11.1()		5 ÷ their 45 or (0).111()	
	or	M1dep	or	
	5.5 ÷ their (0).49 or 11.2()		5.5 ÷ their 49 or (0).112()	
	5 ÷ their (0).45		5 ÷ their 45	
	and	M1dep	and	
	5.5 ÷ their (0).49		5.5 ÷ their 49	
	11.1() (hours) and 11.2() (hours)	A1	(0).111() (hours) and (0).112() (hours)	
18	brand B	A1ft	ft correct decision for their values with M3 scored	
cont	Alternative method 4 of 6 - common number of batteries			
	Scaling towards a cost for a common number of batteries (eg 24 batteries) eg $8 \times 3 \times 5$ or 120 and $6 \times 4 \times 5.5$ or 132	M1		
	eg 3 × 3.60 or 10.8(0)		eg 3 × 360 or 1080	
	and 4 × 2.94 or 11.76	M1	and 4 × 294 or 1176	
	eg their 10.8(0) ÷ their 120 or (0).09 and their 11.76 ÷ their 132 or (0).08(9)	M1dep	eg their 1080 ÷ their 120 or 9 and their 1176 ÷ their 132 or 8.(9) dependent on M1M1	
	(£)0.09 and (£)0.08(9)	A1	9(p) and 8.(9) (p)	
	brand B	A1ft	ft correct decision for their values with M3 scored	

Alternative method 5 continues on the next page

Question	Answer	Mark	Comments	
	Alternative method 5 of 6 – number of hours per unit cost from batteries per unit cost			
	8 ÷ 3.6(0) or 2.2() or 6 ÷ 2.94 or 2.04()	M1	8 ÷ 360 or 0.022() or 6 ÷ 294 or 0.0204()	
	their 2.2() × 5 or 11.1() or their 2.04() × 5.5 or 11.2()	M1dep	their 0.022() × 5 or 0.111() or their 0.0204() × 5.5 or 0.112()	
	their 2.2() × 5 and their 2.04() × 5.5	M1dep	their 0.022() × 5 and their 0.0204() × 5.5	
	11.1() (hours) and 11.2() (hours)	A1	(0).111() (hours) and (0).112() (hours)	
	brand B	A1ft	ft correct decision for their values with M3 scored	
	Alternative method 6 of 6 – cost for common number of battery hours			
18 cont	3.6(0) ÷ 8 or (0).45 or 2.94 ÷ 6 or (0).49	M1	360 ÷ 8 or 45 or 294 ÷ 6 or 49	
	Scaling towards a common number of battery hours (eg 55 hours) eg their (0).45 × 11 or their (0).49 × 10	M1dep	eg their 45 × 11 or their 49 × 10	
	eg their (0).45 × 11 and their (0).49 × 10	M1dep	eg their 45 × 11 and their 49 × 10	
	eg (£)4.95 and (£)4.9(0)	A1	eg 495(p) and 490(p)	
	brand B	A1ft	ft correct decision for their values with M3 scored	

Additional Guidance continues on the next page

	Additional Guidance	
	For the first A mark the values must not be rounded to the same value	
	A1ft can be awarded after A0 for the same value for the correct decision eg 0.09 and 0.09 with decision 'both the same'	M3A0A1ft
	8 × 5 = 40 and 40 ÷ 3.6(0) and 6 × 5.5 = 33 and 33 ÷ 2.94 is equivalent to 8 ÷ 3.6(0) × 5 and 6 ÷ 2.94 × 5.5 on Alt 5	M3
	$8 \times 5 = 40$ and $40 \div 3.6(0)$ is equivalent to $8 \div 3.6(0) \times 5$ on Alt method 5	M2
	$6 \times 5.5 = 33$ and $33 \div 2.94$ is equivalent to $6 \div 2.94 \times 5.5$ on Alt method 5	M2
	(0).45 ÷ 5	M1M1
	(0).45 ÷ 5 and (0).49 ÷ 5.5	M1M1M1
	(0).45 ÷ 5 and (0).415 ÷ 5.5 0.415 is not from a correct method	M1M1M0
18 cont	In Alt method 4 M1M1 can be awarded in either order	
	In Alt method 5 their 2.2() must be correct or from correct method their 2.04() must be correct or from correct method	
	Accept misread of 4 batteries (A) or 3 batteries (B) for up to M3A0A1ft	
	Accept working with minutes eg in Alt method 3 for 2^{nd} M1dep accept $300 \div 45 = 6.6()$ or 6.7 or $330 \div 49 = 6.7()$ for 3^{rd} M1dep accept $300 \div 45$ and $330 \div 49$ for first A mark must see $6.6()$ or 6.67 and $6.7()$	
	or 6.7 and 6.73()	

November, Paper 2, Higher Tier, Question 24

24 Beth ran a 200 metre race.

Here is a graph of the first 8 seconds of her race. She completed the race at a constant speed of 9 m/s

Speed-time graph for Beth

Amy completed the race in 27 seconds.

Did Beth finish before Amy?

You must show your working.

[3 marks]

Question	Answer	Mark	Comments		
	Alternative method 1				
	0.5 × 8 × 9 or 36 or (27 – 8) × 9 or 19 × 9 or 171	M1	May be seen on graph		
	0.5 × 8 × 9 + (27 – 8) × 9 or 207	M1dep	M2 0.5 × (27 + 19) × 9		
	207 and Yes	A1			
	Alternative method 2				
	0.5 × 8 × 9 or 36	M1	May be seen on graph		
	$\frac{200 - \text{their } 36}{9}$ or $\frac{164}{9}$ or 18.2	M1dep			
	26.2 and Yes or 18.2 and 19 and Yes	A1			
24	Alternative method 3				
	0.5 × 8 × 9 or 36	M1	May be seen on graph		
	$\frac{200 - \text{their } 36}{27 - 8}$ or $\frac{164}{19}$ or 8.6	M1dep			
	8.6 and Yes	A1			
	Alternative method 4		-		
	0.5 × 8 × 9 or 36	M1	May be seen on graph		
	Attempt at total distance for Beth for $26.2 \leq \text{total time} < 27$	M1dep	eg (time 26.5s) 0.5 × 8 × 9 + (26.5 – 8) × 9		
	Correct total distance for Beth for $26.2 \leq \text{total time} < 27$ and Yes	A1	eg (time 26.5s) 202.5 and Yes		
		ditional G	uidance		

Practice papers set 3, Paper 2, Foundation Tier, Question 16(a)

16 The speed of the International Space Station is 27 576 kilometres per hour.

16 (a) The station travels 42 600 kilometres in one orbit.

Work out the number of full orbits the station does in one day.

[3 marks]

Q	Answer	Mark	Comments
	Alternative method 1		
	27 576 × 24 or 661 824	M1	
	their 661 824 ÷ 42 600 or 15.5	M1	
	15	A1	
	Alternative method 2	• •	
	42 600 ÷ 27 576 or 1.54	M1	
16(0)	24 ÷ their 1.54 or 15.5	M1	
16(a)	15	A1	
	Alternative method 3		
	27 576 ÷ 42 600 or 0.647	M1	
	their 0.647 × 24 or 15.5	M1	
	15	A1	
	Additional Guidance		

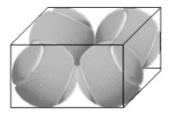
Practice papers set 3, Paper 2, Higher Tier, Question 6(b)/ Foundation Tier, Question 22(b)

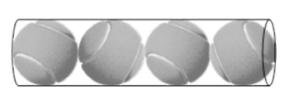
Dev invests £1500 for 2 years.
 The compound interest rate is 1.6% per year.

6 (b) Emma invests £1500 for 2 years.

The interest rate is 1.8% for the first year 1.3% for the second year.

Whose investment is worth more after 2 years? You **must** show your working.


[4 marks]

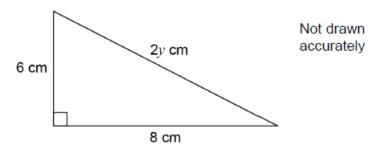

Q	Answer	Mark	Comments		
	Alternative method 1				
	[1548.38, 1548.39]	B1ft	ft their part (a)		
	1500 × 1.018 or 1527	M1	oe		
	1500 × 1.018 × 1.013 or 1527 × 1.013 or [1546.85, 1546.86]	M1dep	oe		
	[1548.38, 1548.39] and [1546.85, 1546.86] and Dev's	A1ft	oe ft their part (a)		
6 (1)	Alternative method 2				
6(b)	1.016 ² or 1.032(256) or 1.0323	M1			
	1.018 or 1.013 seen	M1			
	1.018 × 1.013 or 1.031(234)	M1dep			
	1.032(256) and 1.031 and Dev's	A1			
	Additional Guidance				
	Note incorrect answers from part (a) for £1500 × 1.6 × 2 = £4800 £1500 × 1.6 ² = £3840 £1500 × 1.016 × 2 = £3048	or Alt 1			

Practice papers set 3, Paper 2, Higher Tier, Question 17

Here are two closed containers.Four tennis balls just fit in each container.Each tennis ball has diameter 64 mm

Cuboid

Cylinder


Which container has the smaller surface area? You **must** show your working.

[5 marks]

Q	Answer	Mark	Commer	nts
	128 × 128 (× 2) or 16 384 or 32 768 or 128 × 64 (× 4) or 8192 or 32 768	M1	Any one surface area of cu May be implied	ıboid
	128 × 128 × 2 + 128 × 64 × 4 or 16 384 × 2 + 8192 × 4 or 32 768 + 32 768 or 65 536	M1dep	Total surface area of cubo	id
17	$\pi \times 32^2$ (× 2) or 1024 π or 2048 π or [3215, 3217.41] or [6430.7, 6434.82] or 2 × π × 32 × 256 or 16 384 π or [51 445.76, 51 478.53]	M1	Any one surface area of cy May be implied	rlinder
	18 432π or [57 876, 57 913.344]	A1	Total surface area of cylind	ler
	65 536 and [57 876, 57 913.344] and cylinder	A1ft	ft M2 with at least one correct total surface area with correct conclusion	
	Additional Guidance			
	Cylinder by [7622.656, 7660]			M1M1M1A1A1
	Cylinder with no other working			0

June, Paper 2, Higher Tier, Question 15(a)

15 Sami is trying to work out the exact value of y using Pythagoras' theorem.

Here is her working.

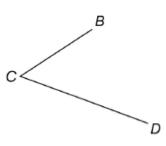
$$(2y)^{2} = 6^{2} + 8^{2}$$

$$2y^{2} = 36 + 64$$

$$2y^{2} = 100$$

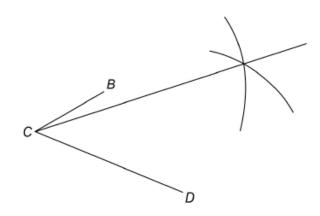
$$y^{2} = 100 \div 2$$

$$y^{2} = 50$$


$$y = \sqrt{50}$$

15 (a) What error has she made in her working?

Question	Answer	Mark	Commen	ts
	Identifies error in working	B1	eg $2y^2$ should be $4y^2$ 2 should be 4 2 should be squared Should have worked out (2 worked out y^2	2y) ² but has only
	Ad	ditional	Guidance	
	Answer may be seen next to Sami's me	ethod bel	ow the diagram	
	Adding brackets around 2 <i>y</i> to Sami's working in line 2 (working lines may be blank)			B1
	Showing the error being corrected			
	eg1 $(2y)^2 = 100$ and $2y = 10$			B1
	eg2 $4y^2 = 36 + 64$			B1
15(a)	She hasn't squared the bracket			B1
	Has only squared y			B1
	The brackets have been left out			B1
	$(2y)^2$ is not equal to $2y^2$			B1
	Should have square rooted 100 before the 2y should not have been taken out			B1
	Should have square rooted 100 before working from line 3 to line 4)	dividing	by 2 (could be referring to	В0
	Line 2 is wrong (has not identified whic	h part of	line 2 is wrong)	B0
	Answer should be $y = 5$ (has not show	n what th	ne error is)	В0
	Ignore non-contradictory work if correct	respons	e seen	


November, Paper 1, Foundation Tier, Question 21(a)

21 (a) Joe wants to bisect angle BCD.

Here is his method.

Use a pair of compasses to draw arcs of the same radius from B and D. Draw a straight line from C through the intersection of the arcs.

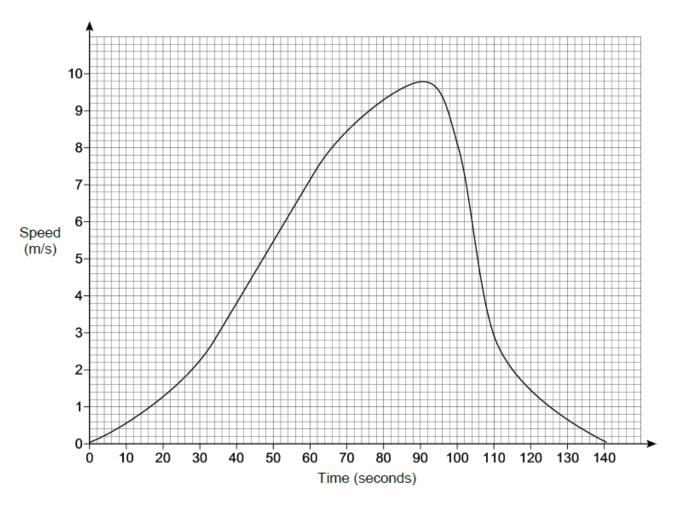
Write down the error in his method.

Question	Answer	Mark	Comme	nts
	The arcs should be drawn from <i>C</i> or from points the same distance from <i>C</i> or The lines are different lengths, so you can't go from the ends	B1	oe	
	Ado	litional G	uidance	
	CB ≠ CD			B1
	Not drawn an arc from C	B1		
	He put compass in wrong place. He sh started at B and D	B1		
21a	Should be an arc on each line CB and		B0	
	Arcs in wrong place		B0	
	Arcs aren't equal		B0	
	His line isn't in the centre of B and D		B0	
	D has a longer line than B	B0		
	Arcs aren't the same radius		B0	
	Should be an arc from B to D		B0	
	Should be an arc from B to the line CD		B0	
	Should be an intersection on CB and C	D		B0

November, Paper 2, Higher Tier, Question 21(b)

21 (b) Levi is solving $2x^2 + 5x = 0$ He uses this method.

> $2x^{2} + 5x = 0$ subtract 5x from both sides $2x^{2} = -5x$ divide both sides by x 2x = -5 divide both sides by 2 x = -2.5


Evaluate his method and his answer.

[2 marks]

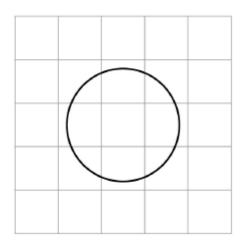
Question	Answer	Mark	Comme	nts	
21(b)	Full evaluation of method and answer	В2	eg1 Cannot divide by $x = eg2$ Should have factori would have also found the eg3 Should have used to then he would have used to then he would have used at then he would have used at then he would have complete then he would have also eg5 Should have complete then he would have also B1 Partial evaluation eg1 $x = 0$ has been omitieg a Should have factorise eg3 Should have used the eg4 Should have drawn eg5 Only found one solute eg6 Cannot divide by zero the statement of the eg4 by the statement of the eg4 by the statement of the eg4 by the the solute eg6 Cannot divide by zero the eg4 by the by the the by the	sed and then he hat $x = 0$ he formula and found that $x = 0$ a graphical method found that $x = 0$ eted the square found that $x = 0$ tted sed he formula a graph tion	
	Additional Guidance				
	For B2 there needs to be an evaluation that $x = 0$ has been omitted from the a		ethod and an indication		
	x(2x + 5) = 0 x = 0 and $x = -2.5$			B2	
	Should be two solutions			B 1	
	What about $x = 0$			B 1	
	The answer is wrong			B 0	
	Ignore non-contradictory further work				

Practice papers set 3, Paper 2, Higher Tier, Question 21(a)

21 The graph shows the speed of a skier.Nick wants to estimate the distance travelled by the skier in 140 seconds.

21 (a) He works out the area of the triangle with vertices (0, 0), (140, 0) and (90, 9.8)

Does Nick's method give a good estimate? Tick a box.


Give a reason for your answer.

[2 marks]

Q	Answer	Mark	Comments	
21(a)	Yes and full explanation involving areas eg Yes, the extra areas are (about) the same as the areas that are left out	B2	B1 for partial explanation eg Some parts are included that shouldn't be and some parts are left out B2 or B1 may be awarded from working on the diagram	
	Additional Guidance			

June, Paper 3, Foundation Tier, Question 13(b)

13 A circle is drawn on a centimetre grid.

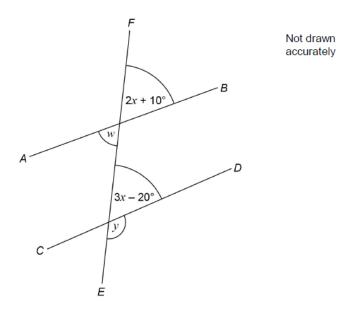
13 (b) Grace works out that the area of the circle is more than 9 cm²

Why must this be wrong?

Question	Answer	Mark	Commen	ts
	Valid reason for the area of the circle or the square around the circle	B1		
	Ad	ditional	Guidance	
	The area of the circle stated to be [4.5,	B1		
	Area of circle of radius 1.5 (cm) is 7(.06	6) or 7.	.07 or 7.1	B1
	The square around it is only 9 cm ² or 9	squares	or 3 × 3 square	B1
	There aren't 9 squares in the circle	B1		
	The circle fits into a 9 cm ² square or 9	B1		
13(b)	It only covers about [4.5, 6.2] squares	B1		
	Circle does not (completely) cover nine	B1		
	There is one whole square and 8 parts	B1		
	Because all of the space for 9 is not used up			B1
	Calculate radius = 1.6(9) (cm) or 1.7 (cm) from area of circle 9 (cm ²) and states radius of circle drawn is smaller			B1
	She uses 9 squares that are half in and half out of the circle, she needed to work it out only using the squares inside the circle			B0
	Does not fill up the whole square (no reference to 9)			B0
	Because the radius is not big enough for it to be 9			В0

November, Paper 2, Foundation Tier, Question 13(b)

13 (a) Use your calculator to work out the exact value of


18 953 × 437 11

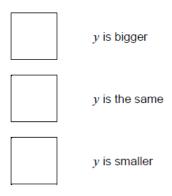
13 (b) Use approximations to 1 significant figure to check if your answer to part (a) is sensible.[3 marks]

Question	Answer	Mark	Comme	nts	
	20 000 and 400 and 10 and 800 000 and Yes	B3ft	ft correct decision for the oe decision eg it is sensil B2 20 000 and 400 and B1 20 000 or 400 or 10	ble	
13b	Additional Guidance				
	800 000 (and Yes) with no other values	В0			
	If answer to (a) is 800 000 to 1sf then the correct ft decision in (b) is Yes				
	eg1 (a) 770 000 (b) decision should be Yes				
	eg2 (a) 1762 (b) decision shou	ld be No			
	eg3 (a) 752.951 (b) allow decision	to be Yes	s or No		

June, Paper 3, Foundation Tier, Question 24(b)

24 AB, CD and EF are straight lines.

24 (a) Ava assumes that AB and CD are parallel.


What answer should she get for the size of angle y?

[4 marks]

24 (b) In fact,

AB and CD are **not** parallel angle w is 60°

What effect does this have on the size of angle *y*? Tick a box.

Show working to support your answer.

[3 marks]

Question	Answer	Mark	Comment	ts	
	2x + 10 = 60 or $2x = 60 - 10$ or $2x = 50$ or $x = 25$	M1			
	3 × their 25 – 20 or 55 or 180 – 55 or 125	M1dep	oe		
24(b)	(y =) 125 and bigger or (y is) 15 bigger	A1ft	oe ft their (a)		
	Additional Guidance				
	Note: A complete logical explanation of eg				
	w is smaller so $2x + 10$ is smaller so x is bigger	M1M1A1			
	2 × 25 + 10 = 60			M1M0A0	
	y is bigger ticked but no valid working			M0M0A0	

Practice papers set 3, Paper 3, Foundation Tier, Question 19(b)

- Here are two right-angled triangles. Not drawn accurately A(0, 4) P A(0, 4) Q(6, 0) X
- **19 (a)** Assume that triangles AOB and PQO are similar.Work out the area of triangle PQO.

19

[3 marks]

19 (b) In fact, *QP* is longer than it would be if the triangles were similar.

How does this affect your answer to part (a)?

Q	Answer	Mark	Comments
	(It is) larger	B1	oe My answer was too small
19(b)	Ad	ditional G	uidance

Practice papers set 3, Paper 1, Foundation Tier, Question 23(b)

- 23 The air pressure in a tyre measures 7.2 bar.Air is leaking out at the rate of 0.2 bar per day.
- 23 (a) Assume that the air continues to leak at the same rate.After how many days will the pressure measure 4.8 bar?

[2 marks]

23 (b) In fact, the rate that the air leaks out increases each day.How does this affect your answer to part (a)?

Q	Answer	Mark	Commer	nts
	It will take fewer days	B1	oe the answer would be lov eg it will be less than 12	wer
23(b)		ditional C		
	Ad	ditional G	Juidance	
	Quicker/faster than 12 days			B1
	Quicker/faster alone			B0

L3 Mathematical Studies 2017 Paper 1 Question 4

4 Estimate the number of litres of liquid drunk by the population of a small English town in one month.

State any assumptions that you have made. You **must** show your working.

[5 marks]

Q	Answer	Mark	Comments
4	Makes an assumption about number of litres per person per day in the range 1 litre to 10 litres (or ml equivalents) and assumes a number of days in a month in the range 28 to 31 and Makes an assumption about number of people in a small town in the range 1000 to 100000	B3	Must state units eg Minimum for B3 (Assume) 5 litres, 28 days,15000 people or B2 for 2 correct assumptions (one missing or not in range) eg (Assume) 3 litres, 30 days, 300000 people or B2 for all 3 values within range but not stated as assumptions eg 4 × 30 × 10000 seen gets B2 M1 or B1 Any one correct assumption stated eg drink about 3 litres per day or Multiplication of 3 values with 2 in range and no units eg 12 × 31 × 20000
	Multiplies their 3 values together	M1	This may be done in two steps
	Accurate answer to their calculation	A1ft	ft their 3 values May be rounded

Additional Guidance
Ignore any calculations to get the number of litres per day eg 4 × 300ml glass is 1.5 litres scores B1 for 1.5 litres (even though arithmetic is wrong)
The amount of liquid they multiply by must be per person not per household
28 to 31 days can come from various calculations eg 7 days × 4 weeks,365(.25) ÷ 12 Again just award the B1 for a number of days within the range
they could use households to estimate population eg small town 2000 houses × 4 people = 8000 population
If working in mI they can still gain the method mark but they must convert to litres for the accuracy mark
The three values may be multiplied in 2 steps eg litres per day × days in month at one point in their working, then this answer × number of people
If they just state a number of litres per month eg 65 litres per month they do not score the marks for assumptions but can score M1 and A1 for multiplying this correctly by their population
Allow rounding at any point
eg uses 7 litres and 31 days in a month, 7 × 31 = 217 and rounds to 200 or 220
Final answer must be an integer

New L2 Certificate in Further Maths Specimen Paper 2 Q21

21 Show that $(2n+3)^3 + n^3$ is divisible by 9 for all integer values of *n*.

[4 marks]

Q	Answer	Mark	Comments
21	$4n^2 + 6n + 6n + 9$ or $4n^2 + 12n + 9$	M1	allow one error implied by $4n^2 + 12n + k$ or $an^2 + 12n + 9$
	$8n^3 + 12n^2 + 24n^2 + 36n + 18n + 9$	M1dep	oe ft their $4n^2 + 6n + 6n + 9$ allow one error
	$8n^3 + 36n^2 + 54n + 9$ or $9n^3 + 36n^2 + 54n + 9$	A1	
	$9n^3 + 36n^2 + 54n + 9$ and $9(n^3 + 36n^2 + 6n + 1)$	A1	oe eg $(9n^3 + 36n^2 + 54n + 9) \div 9$ = $n^3 + 36n^2 + 6n + 1$ or $9n^3 + 36n^2 + 54n + 9$ and all coefficients are divisible by 9
	Add	litional Gui	dance

New L2 Certificate in Further Maths Specimen Paper 1 Q19

19

$$f(x) = 2x^3 - 12x^2 + 25x - 11$$

Use differentiation to show that f(x) is an increasing function for all values of x. [4 marks]

	$6x^2 - 24x + 25$	M1	allow one error		
	$6(x^2-4x)\ldots$	M1dep	ft their $6x^2 - 24x + 25$ must have 3 term quadratic		
19	$6(x-2)^2 \dots$	M1dep	ft their $6(x^2 - 4x) \dots$		
	$6(x-2)^2 + 1$ and valid argument that this is > 0	A1			
	Additional Guidance				

AS Maths Specimen Paper 1 Question 6

6

A parallelogram has sides of length 6 cm and 4.5 cm.

The larger interior angles of the parallelogram have size α

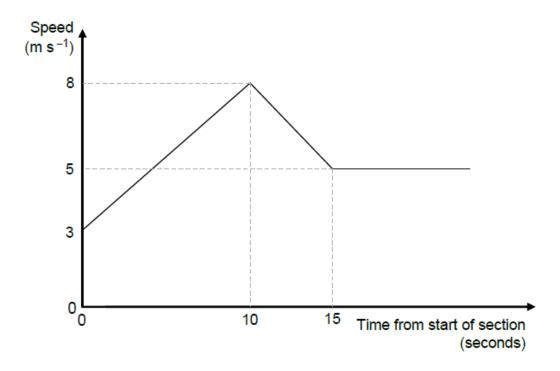
Given that the area of the parallelogram is 24 cm², find the exact value of tan α [4 marks]

Q	Marking Instructions	AO	Marks	Typical Solution
6	Translates given information into an equation by using the formula for the area of triangle or parallelogram to form a correct equation	AO3.1a	M1	AB × AD × $\sin \alpha = 24$ hence 6 × 4.5 × $\sin \alpha = 24$
	Rearranges 'their' equation to obtain a correct value of $\sin \alpha$	AO1.1b	A1F	$\sin\alpha = \frac{24}{27} = \frac{8}{9}$
	Uses 'their' $\sin \alpha$ value to identify an appropriate right-angled triangle or uses identities and deduces exact ratio of $\tan \alpha$ – positive or negative Condone only positive ratio seen	AO2.2a	M1	Sides of right angled triangle are 8, 9 and $\sqrt{17}$ Hence $\tan \alpha = \pm \frac{8}{\sqrt{17}}$
	Relates back to mathematical context of problem and hence chooses negative ratio – accept any equivalent exact form FT 'their' tan values for obtuse α	AO3.2a	A1F	α is one of the largest angles and must be obtuse hence tangent is negative $\tan \alpha = -\frac{8}{\sqrt{17}} = -\frac{8\sqrt{17}}{17}$
	Total		4	

AS Maths Set 2 Practice Paper 2 Question 5 (draft)

5

The line joining A (4, -5) to B (18, k) has gradient $\frac{9}{7}$


Find the exact length of AB.

[4 marks]

Q	Marking Instructions (Approach one)	AO	Marks	Typical Solution
5		AO3.1a	M1	Gradient = $\frac{k5}{18 - 4} = \frac{k + 5}{14}$ $\frac{k + 5}{14} = \frac{9}{7}$
	Solves the equation to find the correct value of k	AO1.1b	A1	$ \begin{array}{cccc} 14 & 7 \\ k = 13 \\ \sqrt{18^2 + 14^2} \end{array} $
	Substitutes 'their' value of k and applies Pythagoras' rule to obtain the required distance	AO1.1a	M1	= √520 = 2√130
	Obtains 'their' correct exact value for the distance <i>AB</i>	AO1.1b	A1F	
	Total		4	
Q	Marking Instructions (Approach two)	AO	Marks	Typical Solution
5	Selects an appropriate method by forming the right angled triangle <i>ACB</i> with right angle at <i>C</i> , vertically below <i>B</i> and	3.1a	M1	$\tan A = \frac{9}{7}$ $\cos A = \frac{7}{\sqrt{130}}$
	expresses the given gradient in terms of a tan A			$AB = \frac{AC}{\cos A}$ $AB = \frac{14\sqrt{130}}{7} = 2\sqrt{130}$
	Finds the exact value of cos A correctly	1.1b	A1	$AB = \frac{1}{7} = 2\sqrt{150}$
	Uses $AB = \frac{AC}{\cos A}$	1.1a	M1	
	Obtains their correct exact value for the distance AB	1.1b	A1F	
	Total		4	

AS Maths Specimen Paper 1 Question 15b

15 The graph shows how the speed of a cyclist varies during a timed section of length 120 metres along a straight track.

15 (b) After the first 15 seconds, the cyclist travels at a constant speed of 5 m s⁻¹ for a further *T* seconds to complete the 120-metre section.

Calculate the value of T.

[4 marks]

Q	Marking Instructions	AO	Marks	Typical Solution
(b)	Identifies $5T$ as the distance travelled after the first 15 seconds	AO3.4	B1	Distance at constant speed = $5T$
	Uses the information given to form an equation to find T (award mark for either trapezium expression separate, totalled or implied)	AO3.1b	M1	Distance in first 15 secs = $\frac{1}{2} \times (3+8) \times 10 + \frac{1}{2} \times (8+5) \times 5$ = 55 + 32.5 = 87.5 5T + 87.5 = 120
	Correctly calculates the distance for the first 15 secs	AO1.1b	A1	So <i>T</i> = 6.5
	Deduces the values of <i>T</i> from the mathematical models applied	AO2.2a	A1	

AS Maths Specimen Paper 1 Question 11

11 Chris claims that, "for any given value of x, the gradient of the curve $y = 2x^3 + 6x^2 - 12x + 3$ is always greater than the gradient of the curve $y = 1 + 60x - 6x^2$ ".

Show that Chris is wrong by finding all the values of x for which his claim is **not** true.

[7 marks]

Q	Marking Instructions	AO	Marks	Typical Solution
11	Obtains $\frac{dy}{dx}$ for both the given curves – at least one term must be correct for each curve	AO3.1a	M1	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 + 12x - 12$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 60 - 12x$
	States both derivatives correctly	AO1.1b	A1	
	Translates problem into an inequality	AO3.1a	M1	Chris's claim is incorrect when $6x^{2} + 12x - 12 \le 60 - 12x$ $2x^{2} + 8x - 24 \le 0$
	States a correct quadratic inequality	AO1.1b	A1	$x^{2} + 4x - 12 \le 0$ (x + 6) (x - 2) \le 0
	FT from an incorrect $\frac{dy}{dx}$ provided both M1 marks have been awarded			Critical values are $x = -6$ and 2 region $x < -6$ $-6 < x < 2$ $x > 2$ sign $+$ $ +$
	Determines a solution to 'their' inequality	AO1.1a	M1	$-6 \le x \le 2$ Chris's claim is incorrect for values of x in the range $-6 \le x \le 2$, so he is wrong
	Obtains correct range of values for <i>x</i>	AO1.1b	A1	
	Must be correctly written with both inequality signs correct			
	Interprets final solution in context of the original question, must refer to Chris's claim	AO3.2a	R1	
	Total		7	

AS Maths Specimen Paper 2 Question 7

7 Solve the equation

 $\sin\theta \tan\theta + 2\sin\theta = 3\cos\theta$ where $\cos\theta \neq 0$

Give all values of θ to the nearest degree in the interval $0^\circ < \theta < 180^\circ$ Fully justify your answer.

[5 marks]

Q	Marking Instructions	AO	Marks	Typical Solution
7	Divides or multiplies by $\cos\theta$	AO3.1a	M1	$\frac{\sin\theta\tan\theta}{\cos\theta} + 2\frac{\sin\theta}{\cos\theta} = 3$
	Obtains correct quadratic	AO1.1b	A1	$\tan^2\theta + 2\tan\theta - 3 = 0$
	Applies a correct method to solve 'their' quadratic Pl	AO1.1a	M1	$(\tan \theta + 3)(\tan \theta - 1) = 0$ $\tan \theta = 1 \text{ or } -3$
	Finds two correct values of tan $ heta$ from 'their' quadratic	AO1.1b	A1F	$\theta = 45^{\circ} \text{ or } 108^{\circ}$ ALT
	Obtains two correct answers CAO	AO1.1b	A1	$\sin\theta \tan\theta \cos\theta + 2\sin\theta \cos\theta = 3\cos^2\theta$ $\sin^2\theta + 2\sin\theta \cos\theta - 3\cos^2\theta = 0$
				$(\sin\theta + 3\cos\theta)(\sin\theta - \cos\theta) = 0$ tan $\theta = 1$ or -3
				heta = 45° or 108°
	Total		5	

AS Maths Specimen Paper 2 Question 8

8 Prove that the function $f(x) = x^3 - 3x^2 + 15x - 1$ is an increasing function.

[6 marks]

Q	Marking Instructions	AO	Marks	Typical Solution
8	Explains clearly that $f(x)$ is increasing $\Leftrightarrow f'(x) > 0$ (for all values of x) or Explains $\Rightarrow f(x)$ is increasing f'(x) > 0 for all values of $xThis may appear at any appropriate point intheir argument$	A02.4	E1	For all x, $f'(x) > 0 \Rightarrow f(x)$ is an increasing function $f(x) = x^3 - 3x^2 + 15x - 1$ $\Rightarrow f'(x) = 3x^2 - 6x + 15$ $\Rightarrow f'(x) = 3(x - 1)^2 + 12$ $\therefore f'(x)$ has a minimum value of 12 therefore $f'(x) > 0$ for all values of x
	Differentiates – at least two correct terms	AO1.1a	M1	OR for $f'(x)$, $b^2 - 4ac = -144$ $\therefore f'(x) \neq 0$ for any real x , so $f'(x)$ is either always positive or always
	All terms correct	AO1.1b	A1	negative. f'(0) = 15
	Attempts a correct method which could lead to $f'(x) > 0$	AO3.1a	M1	therefore $f'(x) > 0$ for all values of x OR
	Correctly deduces $f'(x) > 0$ (for all values of x)	AO2.2a	A1	f''(x) = 6x - 6, which = 0 when $x = 1so min f'(x) is f'(1) = 12therefore f'(x) > 0 for all values of x$
	Writes a clear statement that links the steps in the argument together, the deduction about a positive gradient for all values of x proves that the given function is increasing for all values of x	A02.1	R1	Thus, since, $f'(x) > 0$ for all values of <i>x</i> it is proven that $f(x)$ is an increasing function.
	Total		6	

A-level Maths Specimen Paper 1 Question 15

- 15 The height *x* metres, of a column of water in a fountain display satisfies the differential equation $\frac{dx}{dt} = \frac{8\sin 2t}{3\sqrt{x}}$, where *t* is the time in seconds after the display begins.
- 15 (a) Solve the differential equation, given that initially the column of water has zero height. Express your answer in the form x = f(t)

[7 marks]

15 (b) Find the maximum height of the column of water, giving your answer to the nearest cm.

[1 mark]

Q	Marking Instructions	AO	Marks	Typical Solution
15(a)	Separates variables, at least one side correct.	AO3.1a	M1	$3\sqrt{x}\frac{\mathrm{d}x}{\mathrm{d}t} = 8\sin 2t$
	Obtains correct separation PI	AO1.1b	A1	$\int 3\sqrt{x} \mathrm{d}x = \int 8\sin 2t \mathrm{d}t$
	integrates 'their' expressions, at least one of 'their' sides correct	AO1.1a	M1	$\int 3x^{\frac{1}{2}} dx = \int 8\sin 2t dt$
	Obtains correct integral (condone missing $+ c$) CAO	AO1.1b	A1	$2x^{\frac{3}{2}} = -4\cos 2t(+c)$
	Substitutes initial conditions, to find + <i>c</i> .	AO3.1b	M1	$2 \times (0)^{\frac{3}{2}} = -4\cos(2 \times 0) + c$ $c = 4$
	Obtains a correct solution ACF	AO1.1b	A1	$x^{\frac{3}{2}} = 2 - 2\cos 2t$
	Obtains correct solution of the form $x = f(t)$	AO2.5	A1	$x = \left(2 - 2\cos 2t\right)^{\frac{2}{3}}$
(b)	Obtains correct max height, in cm Award FT from correct substitution into incorrect equation $x = f(t)$ but only if all three M1 marks have been awarded, must have correct units.	AO3.4	A1F	Max height $=4^{\frac{2}{3}}=252$ cm
	Total		8	

A-level Maths Specimen Paper 3 Question 15

15

A sample of 200 households was obtained from a small town.

Each household was asked to complete a questionnaire about their purchases of takeaway food.

A is the event that a household regularly purchases Indian takeaway food.

B is the event that a household regularly purchases Chinese takeaway food.

It was observed that P(B|A) = 0.25 and P(A|B) = 0.1

Of these households, 122 indicated that they did **not** regularly purchase Indian or Chinese takeaway food.

A household is selected at random from those in the sample.

Find the probability that the household regularly purchases **both** Indian and Chinese takeaway food.

[6 marks]

Q	Marking Instructions	AO	Marks	Typical Solution
15	Uses conditional probability, either ① or ②	AO3.1b	M1	$\frac{P(A \cap B)}{P(A)} = \frac{1}{4} \qquad (1)$ $\Rightarrow P(A) = 4P(A \cap B)$
	Obtains both equations ① and ② correctly	AO1.1b	A1	$\frac{P(A \cap B)}{P(B)} = \frac{1}{10} \qquad \textcircled{0}$ $\Rightarrow P(B) = 10P(A \cap B)$
	Evaluates $P(A \cup B)$ correctly PI	AO1.1b	B1	$P(A \cup B) = 1 - \frac{122}{200} = \frac{39}{100}$
	Uses addition law	AO1.1a	M1	$P(A) + P(B) - P(A \cap B) = \frac{39}{100}$ (3)
	Combines the three equations	AO1.1a	M1	$4P(A \cap B) + 10P(A \cap B) - P(A \cap B) = \frac{39}{100}$
	Obtains correct probability, as a fraction or decimal	AO2.2b	A1	$P(A \cap B) = \frac{3}{100}$
ALT	Produces a relevant Venn diagram	AO3.1b	M1	OR 200
				$\begin{array}{c c} B \\ \hline \\ 9x \\ \hline \\ x \\ \hline \\ 3x \\ \hline \\ \end{array}$
	Labels Venn diagram correctly	AO1.1b	A1	
	Forms correct equation to find x PI	AO1.1b	B1	9x + x + 3x = 200 - 122
	Combines terms	AO1.1a	M1	13x = 78
	Solves equation	A01.1a	M1	x = 6
	Obtains correct	AO2.2b	A1	$P(A \cap B) = \frac{6}{200} \text{ or } 0.03$
	probability			200
	Total		6	200

Notes

Notes

Contact us

T: 0161 957 3852 E: maths@aqa.org.uk

aqa.org.uk