

Level 2 Certificate FURTHER MATHEMATICS

Formulae Sheet

8365

Insert

FOR EXAMS IN JUNE 2024 ONLY

[Turn over]

PERIMETER, AREA AND VOLUME

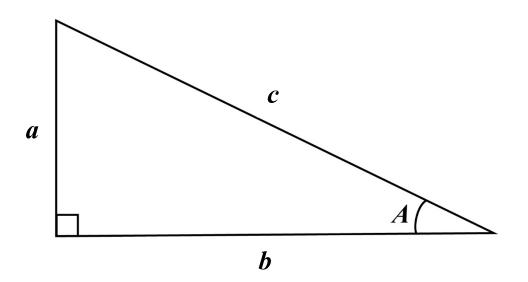
Where *a* and *b* are the lengths of the parallel sides and *h* is their perpendicular separation:

Area of a trapezium = $\frac{1}{2}(a + b)h$

Volume of a prism = area of cross section × length

Where r is the radius and d is the diameter:

Circumference of a circle = $2\pi r = \pi d$

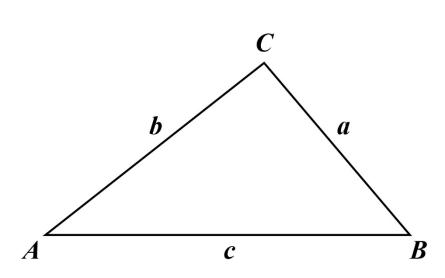

Area of a circle = πr^2

QUADRATIC FORMULA

The solution of $ax^2 + bx + c = 0$ where $a \neq 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

PYTHAGORAS' THEOREM AND TRIGONOMETRY


In any right-angled triangle where *a*, *b* and *c* are the length of the sides and *c* is the hypotenuse:

$$a^2 + b^2 = c^2$$

In any right-angled triangle ABC where a, b and c are the length of the sides and c is the hypotenuse:

$$\sin A = \frac{a}{c}$$
$$\cos A = \frac{b}{c}$$
$$\tan A = \frac{a}{b}$$

[Turn over]

In any triangle *ABC* where *a*, *b* and *c* are the length of the sides:

sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

cosine rule: $a^2 = b^2 + c^2 - 2bc \cos A$

Area of triangle = $\frac{1}{2}ab \sin C$

For any angle θ $\tan \theta = \frac{\sin \theta}{\cos \theta}$

and $\sin^2\theta + \cos^2\theta = 1$

COORDINATE GEOMETRY

Equation of a straight line passing through (x_1, y_1) with gradient *m*

 $y - y_1 = m(x - x_1)$

The general equation of a circle, centre (a, b), radius r $(x-a)^2 + (y-b)^2 = r^2$

END OF INSERT

BLANK PAGE

Copyright $\ensuremath{\textcircled{O}}$ 2024 AQA and its licensors. All rights reserved.

WP/M/SB/2024/8365/V1