

This meeting will be recorded

Exam boards have an Ofqual requirement to record event audio.

Recordings are kept for one year and not shared as an accompaniment to session resources.

The recording will begin now.

3

Copyright © AQA and its licensors. All rights reserved.

Objectives

4

- To consider GCSE questions addressing aspects of AO3 (inference, interpretation and evaluation) which students find/found challenging.
- To consider A-level questions addressing aspects of AO3 (problem solving and modelling).

Copyright ID AQA and its licensors. All rights reserved.

• To consider how we might support students in preparing for and overcoming these challenges.

AQA

<section-header><text><list-item><list-item><text>

Assessment Objective 1

Use and apply standard techniques

- Students should be able to:
- accurately recall facts, terminology and definitions

Copyright © AQA and its licensors. All rights rese

- use and interpret notation correctly
- accurately carry out routine procedures or set tasks requiring multi-step solutions.

Weighting: F 50% H 40%

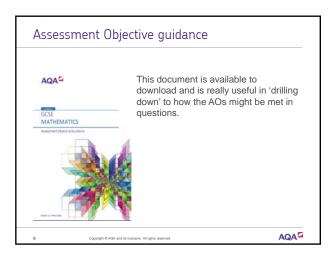
Assessment Objective 2 Reason, interpret and communicate mathematically Students should be able to: • make deductions and inferences and draw conclusions from mathematical information • construct chains of reasoning to achieve a given result • interpret and communicate information accurately • present arguments and proofs • assess the validity of an argument and critically evaluate a given way of processing information. Weighting: F 25% H 30%

Assessment Objective 3

Solve problems within mathematics in other contexts

Copyright © AQA and its licensors. All rights reserved.

Students should be able to:


7

8

- translate problems in mathematical or non-mathematical contexts into a process or a series of mathematical processes
 make and use connections between different parts of mathematics
- interpret results in the context of the given problem
- evaluate methods used and results obtained
- evaluate solutions to identify how they may have been affected by assumptions made.

Weighting: F 25% H 30%

Copyright © AQA and its licensors. All rights reserved.

Assessment Objective guidance

A03.3

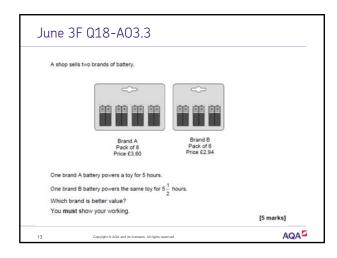
10

11

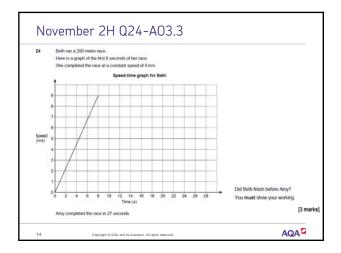
Interpreting results in the context of the given problem. This can be used in questions where the student has to decide whether to round up or truncate to give an integer answer that is appropriate for that particular problem. It can also be used where the student obtains one or more numerical answers and then has to decide which is cheaper / faster or who won a race. Some questions have an extra step, for example to interpret an amount of money as the number of extra weeks of saving required and this would fit this strand. This will frequently appear in multi-strand questions with AO3.1

AQA

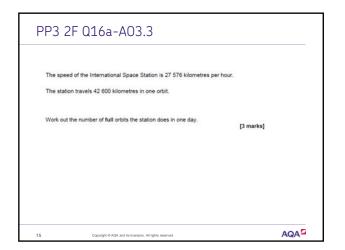
Assessment Objective 3 Solve problems within mathematics in other contexts Students should be able to: 3.1 translate problems in mathematical or non-mathematical contexts into a process or a series of mathematical processes 3.2 make and use connections between different parts of mathematics 3.3 interpret results in the context of the given problem 3.4 evaluate methods used and results obtained

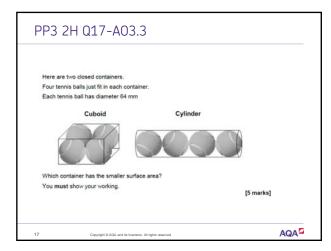

Copyright © AQA and its licensors. All rights reserved.

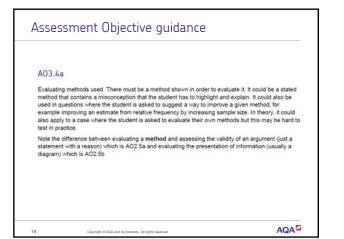
3.5 evaluate solutions to identify how they may have been affected by assumptions made.

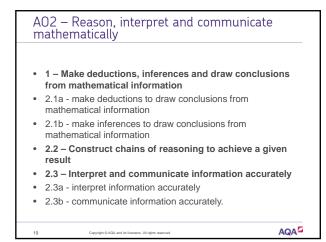

Weighting: F 25% H 30%

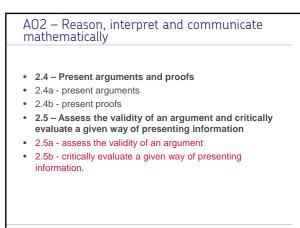
Copyright © AQA and its licensors. All rights reserved.


June 3F Q21, 3H Q11-A03.3	
Purple paint is made by mixing red paint and blue paint in the ratio 5:2 Yan has 30 litres of red paint and 9 litres of blue paint.	
What is the maximum amount of purple paint he can make?	[3 marks]
2 Capyoft 6 AQA and its Teamours. All rights reserved.	AQA









PP3 2	2H Q6b (2F 22b)-A03.3	
Dev inve	sts £1500 for 2 years.	
The com	pound interest rate is 1.6% per year.	
Emma inv	vests £1500 for 2 years.	
The intere	est rate is	
1.8	8% for the first year	
1.3	3% for the second year.	
Whose inv	vestment is worth more after 2 years?	
You must	show your working.	[4 marks
16	Copyright @ AQA and its licensors. All rights reserved.	AQA

Copyright ID AQA and its licensors. All rights reserved.

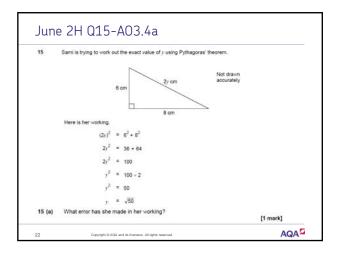
20

21

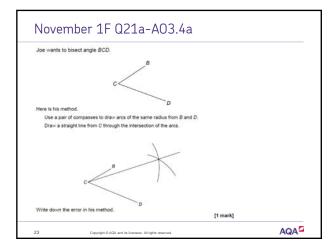
AQA

Assessment Objective 3

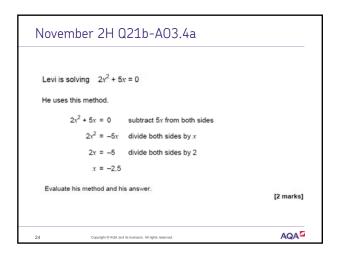
Solve problems within mathematics in other contexts

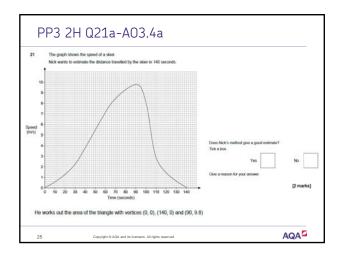

Students should be able to:


- 3.1 translate problems in mathematical or non-mathematical contexts into a process or a series of mathematical processes
- 3.2 make and use connections between different parts of mathematics
- 3.3 interpret results in the context of the given problem
- 3.4 evaluate methods used and results obtained


Copyright © AQA and its licensors. All rights reser

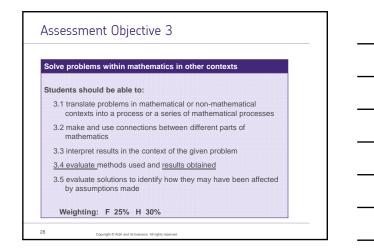
3.5 evaluate solutions to identify how they may have been affected by assumptions made.

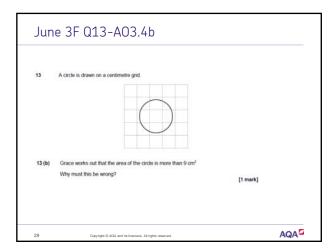

Weighting: F 25% H 30%



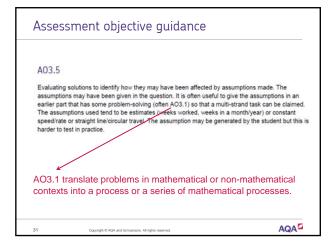


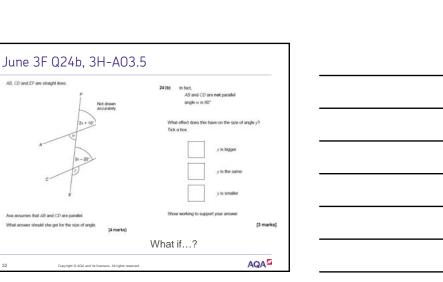
Assessment Objective guidance

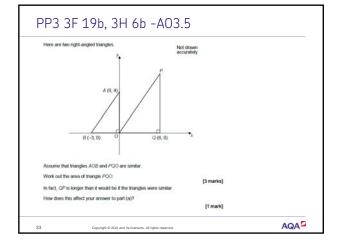

AO3.4b


27

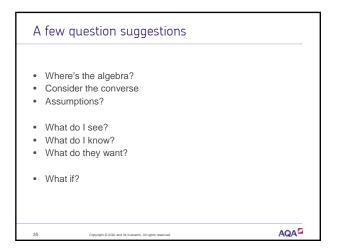
- Evaluating results obtained. This can be tested implicitly in a question where one of the results is impossible within the given constraints or context and needs to be ruled out this particular result may not be seen but the fact that it is not given as an answer implies the evaluation has taken place.
- However, usually a result will need to be seen (perhaps in a previous part) for the student to evaluate it. .


Copyright © AQA and its licensors. All rights reserved.


- . For example it can be used when deciding whether a previously estimated answer is too high, too low or appropriate. It could also be used in a situation where the student is given a problem and the result and asked whether the result is sensible. Note the subtle difference between asking the student to evaluate
- their result or their method.

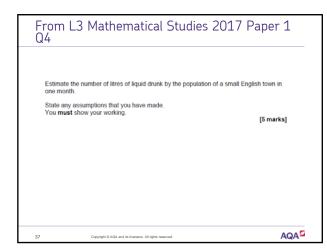


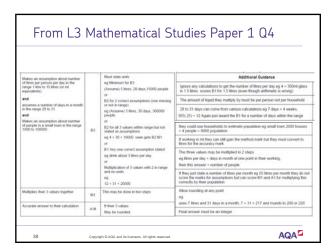
Nover	mber 2F Q13b-AO	3.4b	
Use your ca	alculator to work out the exact value of	<u>18 953 × 437</u> 11	[1 mark]
Use approx	imations to 1 significant figure to check	f your answer to part (a) is	: sensible. [3 marks]
30	Copyright © ADA and its licensors. All rights reserve		AQA



Р	P3 1F 23b-A03.5			
	The air pressure in a tyre measures 7.2 bar. Air is leaking out at the rate of 0.2 bar per day. Assume that the air continues to leak at the same rate. After how many days will the pressure measure 4.8 bar?	[2 marks]		
	Answer In fact, the rate that the air leaks out increases each day. How does this affect your answer to part (a)?	[1 mark]		
34	Copyright © AQA and its licensors. All rights reserved.		AQA	

Realising potential

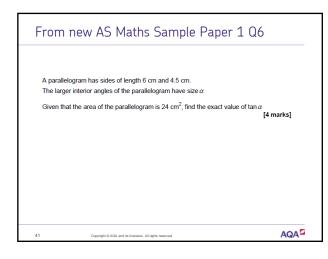

36

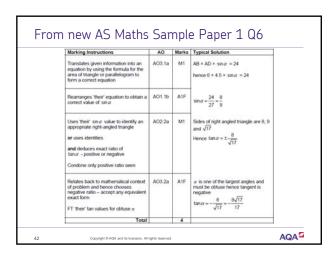

Problem solving beyond GCSE

Copyright © AQA and its licensors. All rights reserved.

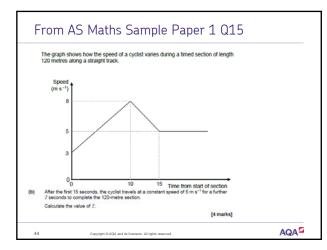
Follow us on Twitter @AQACPE

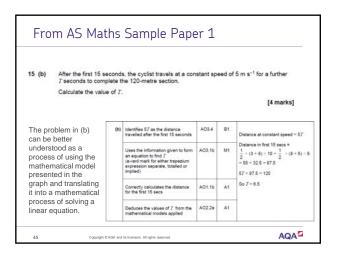
Maths summer 18 hub meeting



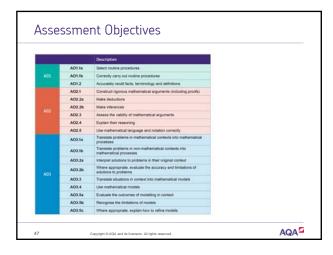

	m new Level 2 Fu ber 2	ırthe	r Maths Sampl	e
21	Show that $(2n+3)^3 + n^3$ is di	visible by 9	9 for all integer values of <i>n</i> .	[4 marks]
	$4n^2 + 6n + 6n + 9$ or $4n^2 + 12n + 9$	M1	allow one error implied by $4n^2 + 12n + k$ or $an^2 + 12n + 9$	
	8n ³ + 12n ² + 24n ² + 36n + 18n + 9	M1dep	oe ft their $4n^2 + 6n + 6n + 9$ allow one error	
	$8n^3 + 36n^2 + 54n + 9$ or $9n^3 + 36n^2 + 54n + 9$	A1		
	$9n^3 + 38n^2 + 54n + 9$ and $9(n^3 + 36n^2 + 6n + 1)$	A1	oe eg $(9n^3 + 36n^2 + 54n + 9) + 9$ $= n^3 + 36n^2 + 6n + 1$ or $9n^3 + 36n^2 + 54n + 9$ and all coefficients are divisible by 9	
39	Copyright © AQA and its licensors. All rig	hts reserved.		AQA

19	$f(x) = 2x^3 - 12x^2 + 25x - 12x^2 + 25x^2 - 12x^2 - 12x^2 - 12x^2 + 25x^2 - 12x^2 - $	11		
	Use differentiation to show	v that f(x)	is an increasing function for all va	alues of x. [4 mark:
6x2	-24x + 25	M1	allow one error	
6(x	² – 4x)	M1dep	ft their $6x^2 - 24x + 25$ must have 3 term quadratic	
6(x	- 2) ²	M1dep	ft their $6(x^2 - 4x) \dots$	
6(x	$(-2)^2 + 1$ and valid argument that is > 0	A1		





he line joining A (4, –5) to <i>B</i> (18	3, <i>k</i>) has	gradient $\frac{9}{7}$	
ind the exact length of	AB.			[4 ma
Selects an appropriate method by finding an expression for the gradient and forming an equation	AO3.1a	М1	$ \begin{array}{l} \text{Gradient} = \\ \frac{k5}{18 - 4} = \frac{k + 5}{14} \\ \frac{k + 5}{18} = \frac{9}{2}. \end{array} $	
Solves the equation to find the correct value of \boldsymbol{k}	AO1.1b	A1	14 - 7 k = 13 $\sqrt{18^2 + 14^2}$	
Substitutes 'their' value of k and applies Pythagoras' rule to obtain the required distance	AO1.1a	MI	= √520 = 2√130	
Obtains their correct exact value for the distance AB	A01.1b	A1F		


-	

	Weighting (approx %)		Overarching
	A-level	AS	theme link
1	50	60	
2	25	20	Mathematical argument, language and proof
3	25	20	Mathematical problem solving Mathematical modelling

AOs from the specification (AO3)

AO3: Solve problems within mathematics and in other contexts.

Students should be able to:

- translate problems in mathematical and non-mathematical contexts into mathematical processes
- interpret solutions to problems in their original context, and, where appropriate, evaluate their accuracy and limitations
- · translate situations in context into mathematical models

Copyright © AQA and its licensors. All rights reserved.

• use mathematical models

48

 evaluate the outcomes of modelling in context, recognise the limitations of models and, where appropriate, explain how to refine them.

AQA

AOs from the specification (AO3)

Where questions/tasks targeting this Assessment Objective will also credit students for the ability to 'use and apply standard techniques' (AO1) and/or to 'reason, interpret and communicate mathematically' (AO2) an appropriate proportion of the marks for the question/task must be attributed to the corresponding Assessment Objective(s).

AQA

Problem-solving cycle (DfE)

49

- Specifying the problem.Collecting information.
- Processing and representing information. .

Copyright © AQA and its licensors. All rights reserved.

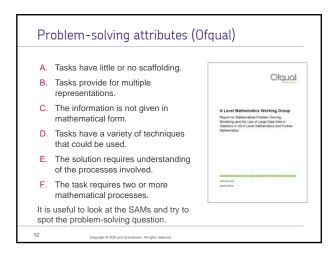
Copyright @ AQA and its licensors. All rights reserved.

- Interpreting results. ٠ .
- Repeating the cycle if necessary.

"Each set of assessment should include questions/tasks where learners are assessed on their ability to solve complete problems in an unstructured manner and which require the use of multiple parts of this cycle.'

Some attributes of problem solving questions

- · It is not necessary for every problem solving task to exhibit all of the following attributes.
- At least one attribute should generally apply for a task to be regarded as problem solving.


However:

51

50

- a question with one of these attributes may not be problem solving
- · a problem solving question may be written with none of these attributes.

Copyright © AQA and its licensors. All rights reserved

Attributes of problem solving questions

Question 11 AS Sample Paper 1

Chris claims that, 'for any given value of x, the gradient of the curve $y = 2x^3 + 6x^2 - 12x + 3$ is always greater than the gradient of the curve $y = 1 + 60x - 6x^{2^{-n}}$. Show that Chris is wrong by finding all the values of x for which his claim is not true. [7 marks]

A. Little or no scaffolding...

53

· little guidance will be provided beyond a start and end point

• mathematical processes required are not explicitly stated.

F. Two or more processes are required, or the solution requires drawing together different parts of mathematics.

Copyright © AQA and its licensors. All rights reserved.

Attributes of problem solving questions

Question 7 AS Sample paper 2

Solve the equation

54

 $\sin\theta \tan\theta + 2\sin\theta = 3\cos\theta$ where $\cos\theta \neq 0$

Give all values of θ to the nearest degree in the interval $0^\circ < \theta < 180^\circ$ Fully justify your answer.

[5 marks]

D. A choice for the student of techniques to be used to solve the problem.

Copyright © AQA and its licensors. All rights reserved

Attributes of problem solving questions

Question 8 AS Sample paper 2

Prove that the function $f(x) = x^3 - 3x^2 + 15x - 1$ is an increasing function.

[6 marks] E. The solution requires understanding of the processes involved, rather than just application of techniques

19 $f(x) = 2x^3 - 12x^2 + 25x - 11$

55

Use differentiation to show that f(x) is an increasing function for all values of x. [4 marks]

Attributes of problem solving questions

Copyright © AQA and its licensors. All rights reserved.

Question 15 A-level Sample paper 1

The height x metres, of a column of water in a fountain display satisfies the differential equation $\frac{dx}{dt} = \frac{8 \sin 2t}{3\sqrt{x}}$, where t is the time in seconds after the display begins.

(a) Solve the differential equation, given that initially the column of water has zero height. Express your answer in the form x = f(t)

[7 marks]

(b) Find the maximum height of the column of water, giving your answer to the nearest cm.
[1 mark]

C. Results and/or methods need to be interpreted and/or evaluated for example in a real world context.

56 Copyright © AQA and its licensors. All rights reserved.

Attributes of problem solving questions

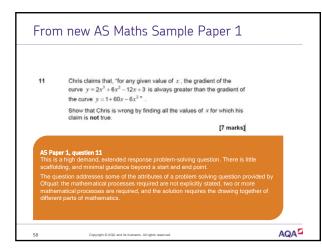
Question 15 A-level Sample paper 3

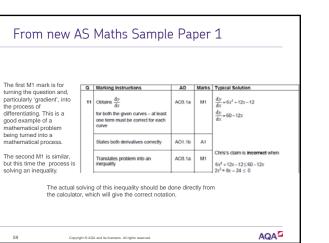
A sample of 200 households was obtained from a small town.

Each household was asked to complete a questionnaire about their purchases of takeaway food.

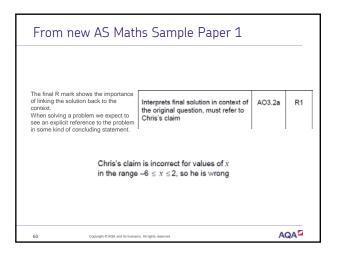
 ${\cal A}$ is the event that a household regularly purchases Indian takeaway food. ${\cal B}$ is the event that a household regularly purchases Chinese takeaway food.

It was observed that P(B|A) = 0.25 and P(A|B) = 0.1

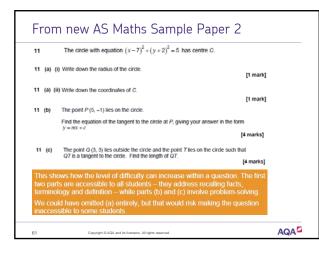

Of these households, 122 indicated that they did **not** regularly purchase Indian or Chinese takeaway food,

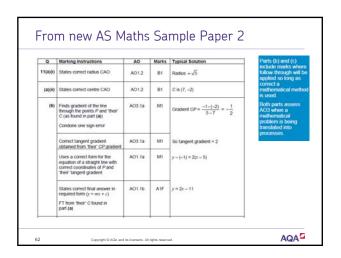

A household is selected at random from those in the sample. Find the probability that the household regularly purchases **both** Indian and Chinese takeaway food.

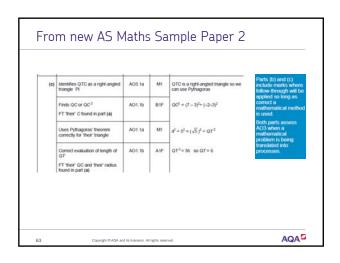
[6 marks]

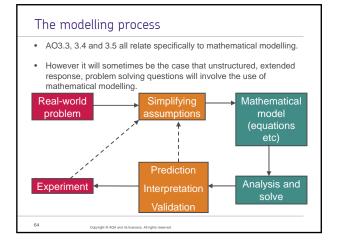

B. **Provision for multiple representations** such as use of diagrams as well as calculations.

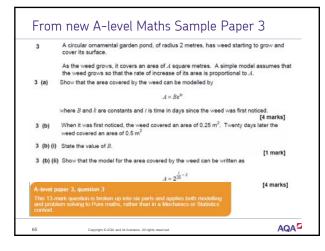
Copyright © AQA and its licensors. All rights reserved.

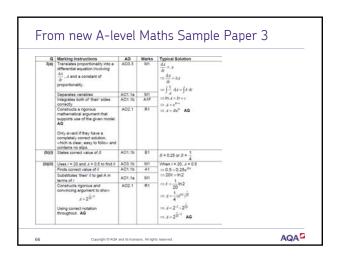


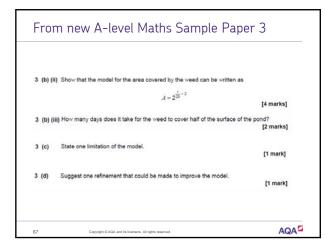






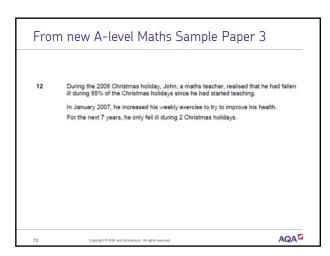


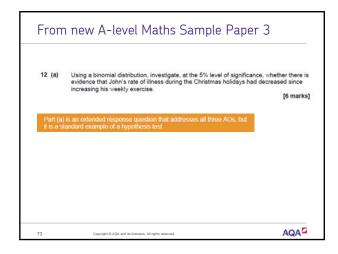


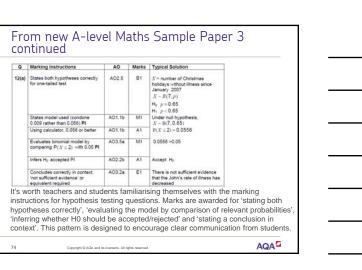


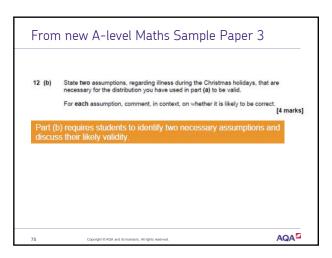
(b)(iii)	Uses the model to set up correct equation and attempt to find /	A03.4	M1	$2\pi = 2^{\frac{t}{20}-2}$
	Finds correct value of r	AO1.1b	A1	/ = 93.03 days
(c)	States any sensible and relevant limitation of the model that is specified in terms of the pond, area, weed, rate of change or time.	AO3.5b	E1	Model predicts that the area of weed will increase without limit and this is not possible since the area of the pond is 4π
(d)	Any sensible and relevant refinement to the model that is specified in terms of the pond, area, weed, rate of change or time	A03.5c	E1	Introduce a limiting factor such a fish eating weed or rate of growth decreases as surface area covered

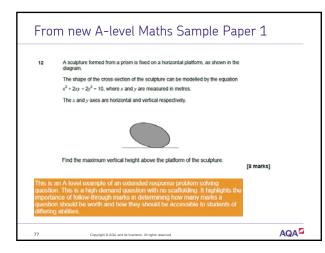
17	In this question use $g = 9.81 \text{ m s}^{-2}$.
	A ball is projected from the origin. After 2.5 seconds, the ball lands at the point with position vector (40I – 10J) metres.
	The unit vectors I and J are horizontal and vertical respectively.
	Assume that there are no resistance forces acting on the ball.
17 (a)	Find the speed of the ball when it is at a height of 3 metres above its initial position. [6 marks
17 (b)	State the speed of the ball when it is at its maximum height. [1 mart
17 (c)	Explain why the answer you found in part (b) may not be the actual speed of the ball when it is at its maximum height.
	[1 mar
least oi you thr	Dfqual requirement that every set of assessments will have a ne question addressing AO3.3, AO3.4 and AO3.5. We'll take ough the mark scheme on the next page to see what student do to answer this successfully.
69	Covvisit © AQA and its licenses. All rights reserved.

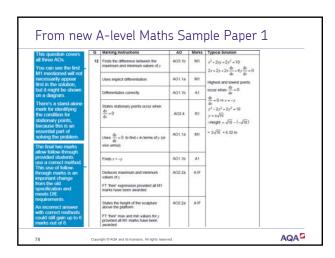



The first mark could	٩	Marking Instructions	AO	Marks	Typical Solution
be given at any stage in the solution. The second mark is for translating the	17(a)	Obtains correct horizontal component of the initial velocity	A01.1b	B1	2.5U = 40 U = 16
situation in context into a mathematical model		Forms equation to find vertical component of initial velocity	A03.3	Mt	-10 = 2.5¥ - 0.5 × 9.81 × 2.5 ²
The third mark is for using correct tochniques		Obtains correct vertical component of initial velocity	A01.15	A1	V = 8.2625
The fourth mark is for using the mathematical model. The fifth mark is for		Forms equation for vertical component of velocity at height 3 using 'their' derived values for U and F	A03.4	M1	$v_{g}^{2} = 8.2625^{2} + 2 \times (-9.81) \times 3$
the correct calculation The final mark is		Obtains correct component of velocity	A01.1b	A1	v _p = 3.067
awarded for the correct calculation and interpreting the solution to the problem in its original		Correct final speed with units, correct for 'their' U and vy	A03.2a	A1F	$v = \sqrt{16^2 + 3.067^2} = 16.3 \mathrm{m s}^{-1}$
context, rewarding the completion of a	1	FT applies only if both M1 marks bave been awarded			




Answers must be given to three significant figures with appropriate units to match the value of					
g in the question. Part (b) is given for using the model to state 'their' value.	(b)	States 'their' value of horizontal component of the initial velocity from part (a)	A03.4	A1F	16 m s ⁻¹
Part (c) is given if the student recognises the limitation of the model used. Whilst the mark scheme limits this to horizontal velocity, a similar argument holds for vertical velocity.	(c)	Explains that horizontal velocity has been assumed to be constant in their model and that this is not likely to be true, with valid reasoning	A03,56	E1	It was assumed that there were no resistance forces acting on the ball which is unlikely to be true in reality. The horizontal speed of the ball is likely to vary air resistance would slo the ball down, wind might spee the ball up





(b)	States one correct assumption(s) regarding validity of model	AO3.5b	E1	Assumption 1 The probability of illness remain constant throughout one's life Validity Not fully valid, as age has an
	States corresponding correct description(s) of likelihood of validity in context	A02.4	E1	impact on the immune system
	States second correct assumption(s) regarding validity of model	AO3.5b	E1	Assumption 2 Annual results (of illness) are independent of one another
	States corresponding correct description(s) of likelihood of validity in context	A02.4	E1	Validity (Largely) valid. Trials are sufficiently far apart that an illness spanning two Christmase
	Max two assumptions with description of validity			is unlikely. OR
		- 8		Assumption 3 There are only two states, well and ill Validity Unclear. Grey area exists. eg does a mild sore throat coun as ill?

How did we do?

Please take a moment to complete a brief evaluation form for today's event. Your feedback is very important to us as it helps us improve and plan future training.

You should have been emailed the evaluation form. Please check your inbox (possibly your junk mail folder). If you haven't received it please give your trainer your name, centre name/ number and email address so that we can look into it for you.

Thank you.

80

Copyright © AQA and its licensors. All rights reserved.

AQA

AQ/ Realising poter	A Control of the second s	
Than	k you	
81	Copyright ID ACIA and its licensors. All rights reserved.	Follow us on Twitter @AQACPD