

Agenda	
• GCSE: KS3 - KS4	
Bridging the gap	
Composite functions	
Use of colour	
 Functions - building blocks 	
 Spot the mistake, Andy Lutwyche 	
 AQA key stage 3 tests for years 7, 8 and 9 	
• GCSE - KS4	
 AQA GCSE: 90 maths problem solving questions 	
GCSE: Completion tasks	
 Here's the diagram, what's the question? 	
 The answer is, what was the question? 	
GCSE: Foundation	
 GCSE: Use of technology - PhET Sims 	
GCSE foundation - Venn diagrams	
GCSE higher - inequalities	
GCSE methods in mathematics	
6 Copyright © 2022 AQA and its licensors. All rights reserved.	AQA

Building blocks answers		x = -1		gf(3) = 2		$fg(x) = 4x^2 - 4x + 5$		
h() = -8	<i>x</i> =	= -4	x	= 2	$g^{-1}(x) =$	$=\sqrt{\frac{x+2}{3}}$
For functions		13	3	$x = \frac{3y}{2}$	$\frac{y-1}{4}$	$q = \frac{1}{p}$		
		11		13	5 <i>x</i>	: + 2	<u>y</u>	+ 3 4

			Look at m	any examp	les			
Number	1sf	Number 1sf Number 2sf				Number 2sf		
21	20	1499	1000	1499	1500	1501	150	
24	24	1500	2000	1500	1500	1900	190	
25	25	1501	2000	1501	1500	1949	190	
27	27	2000	2000	2000	2000	1950	200	
29	29	2400	2000	2400	2400	1960	200	
29.9999	30	<mark>2499</mark>	2000	2499	2500	1990	200	
		2500	3000	2500	2500	1949	190	
						1950	200	
For exam	ple, in B	32, the form	nula is			1500	150	
=ROUND(A	2,1-(1+IN	T(LOG10(ABS(A	(2)))))			2100	210	
						2050	210	
						2049	200	

Multiply out	and simplify	(x + 5)(x - 1	1)		[2 marks
What the e	xaminer has to	o say			
What the e Again, there initially give answer.	xaminer has to are lots of diffe you four terms Answer	o say erent methods o and then the tw	of multip vo x tern	lying out two I ns will simplify	prackets but they all shoul / to give you your final
What the e Again, there initially give answer.	xaminer has to a are lots of diffe you four terms Answer	o say erent methods of and then the tw	of multip vo x tern	lying out two I ns will simplify Max Mark	prackets but they all shoul to give you your final

Answer	Mark	Comments
Answer or trial which leads to a multiple of 3 when 2 is subtracted or a multiple of 4 when 1 is added	M1	
11 or 23 or 35 etc	A1	Any number in the sequence $12n - 1$

Kerry thinks of a number.	n	n-1	n+2	17	16	19	34	33	36
	1	0	3	18	17	20	35	34	37
to get a multiple of X add X to my number to get a multiple of X	2	1	4	19	18	21	36	35	38
	3	2	5	20	19	22	37	36	39
	4	3	6	21	20	23	38	37	40
What number could Kerry be thinking of?	5	4	7	22	21	24	39	38	41
[2	marks] 6	5	8	23	22	25	40	39	42
	7	6	9	24	23	26	41	40	43
	8	7	10	25	24	27	42	41	44
	9	8	11	26	25	28	43	42	45
	10	9	12	27	26	29	44	43	46
	11	10	13	28	27	30	45	44	47
	12	11	14	29	28	31	46	45	48
	13	12	15	30	29	32	47	46	49
	14	13	16	31	30	33	48	47	50
	15	14	17	32	31	34	49	48	51
	16	15	18	33	32	35	50	49	52

Thank you