

GCSE **MATHEMATICS**

Hub school network meetings

Accessibility and exam questions resource booklet

Published: Spring 2020

Contents

Contents	Page
1F, Q21a and 21b	4
2F, Q22	9
3F, Q25	12
1H, Q20	16
2H, Q20	20
3H, Q27	24

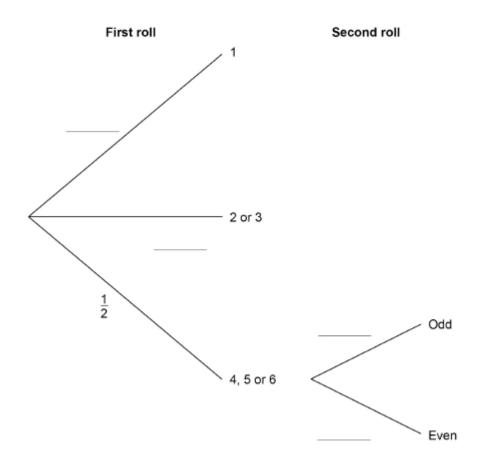
1F, Q21(a) and 21(b)

21 Anna plays a game with an ordinary, fair dice.

If she rolls 1 she wins.

If she rolls 2 or 3 she loses.

If she rolls 4, 5 or 6 she rolls again.


When she has to roll again,

if she rolls an odd number she wins

if she rolls an even number she loses.

21 (a) Complete the tree diagram with the four missing probabilities.

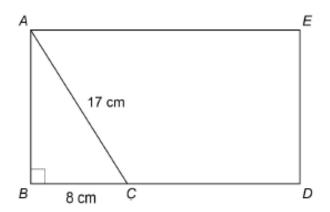
[2 marks]

Question	Answer	Mark	Comments	
21(a)	$\frac{1}{6}$ on '1' and $\frac{1}{3}$ or $\frac{2}{6}$ on '2 or 3' and $\frac{1}{2}$ on each of 'Odd' and 'Even'	B2	oe fraction, decimal or percentage B1 $\frac{1}{6} \text{ on '1' and } \frac{1}{3} \text{ or } \frac{2}{6} \text{ on '2 or 3'}$ or $\frac{1}{2} \text{ on each of 'Odd' and 'Even'}$ or all correct unsimplified probabilities with one or more simplification errors $\text{eg } \frac{3}{6} \text{ on 'Odd' simplified to } \frac{1}{3}$	
	Additional Guidance			
	Accept decimals or percentages roun least 2 significant figures	nded or tru	incated correctly to at	
	Only withhold a mark for simplification awarded	n errors if	B2 would otherwise be	
	Ignore extra branches added			
	Ignore attempts to work out combined probabilities to the right of the tree diagram			
	If an answer line is blank, the student elsewhere on the branch	t may hav	e written their answer	

21 (b)	Is Anna more likely to win or to lose? You must work out the probability that she wins.	[4 marks]

Question	Answer	Mark	Comments
	Alternative method 1: P(1) + P(4, 5	or 6) × P	P(Odd)
	$\frac{1}{2}$ × their $\frac{1}{2}$ or $\frac{1}{4}$	M1	oe
	their $\frac{1}{4}$ + their $\frac{1}{6}$	M1dep	oe
	(P(win) =) $\frac{10}{24}$ or $\frac{5}{12}$	A1ft	oe ft their tree diagram
	Lose (and P(Lose) = $\frac{14}{24}$ or $\frac{7}{12}$ oe)	A1ft	ft correct decision for their $\frac{5}{12}$ (and their $\frac{7}{12}$) with M2 scored
21(b)	Alternative method 2: 1 – P(2 or 3)	-P(4, 5	or 6) × P(Even)
	$\frac{1}{2}$ × their $\frac{1}{2}$ or $\frac{1}{4}$	M1	oe
	their $\frac{1}{4}$ + their $\frac{1}{3}$ or P(lose) = $\frac{7}{12}$	M1dep	oe ft their tree diagram
	(P(win) =) $\frac{10}{24}$ or $\frac{5}{12}$	A1ft	oe ft their tree diagram
	Lose (and P(Lose) = $\frac{14}{24}$ or $\frac{7}{12}$ oe)	A1ft	ft correct decision for their $\frac{5}{12}$ (and their $\frac{7}{12}$) with M2 scored
	Additional Guidance is on the follo	wing pag	je

Question	Answer	Mark	Commer	nts	
	Addi	itional G	uidance		
	Check the tree diagram for working				
	Any 'their' or ft probability must be > 0	and < 1 f	or marks to be awarded		
	For the second A1ft, the ft can be from score 4 marks) or an arithmetic error (vM1M1A0A1ft)		,		
	Accept equivalent fractions or decimals equivalent fractions, decimals or perce				
	Accept decimals or percentages rounded or truncated correctly to at least 2 significant figures				
21(b)	Condone $\frac{1}{2}$ × their $\frac{1}{2}$ as part of a longer, incorrect multiplication				
cont	eg $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{6}$ M1M0A0A0			M1M0A0A0	
	Condone decimals used within fraction	ns			
	eg P(Win) = $\frac{2.5}{6}$ at le M1M				
	For the method marks, condone incorr	at least M1M1 (may go on to			
	eg $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} + \frac{1}{6} = \dots$ score 3 or 4 marks)				
	For the second A1ft, if the student gives a value for P(Lose), their P(Win) + their P(Lose) must equal 1				
	However, allow a comparison to $\frac{1}{2}$ unless it is clearly an incorrect value for P(Lose)				
	(2000)				


In part (a), the tree diagram was not done very well but in part (b) there were actually very few correct solutions at all. This is a familiar topic but it was done very badly.

2F, Q22

22 The diagram shows rectangle ABDE and right-angled triangle ABC.

AC = 17 cm

BC = 8 cm

Not drawn accurately

BC: CD = 1:2

Work out the area of rectangle ABDE.	[4 marks]

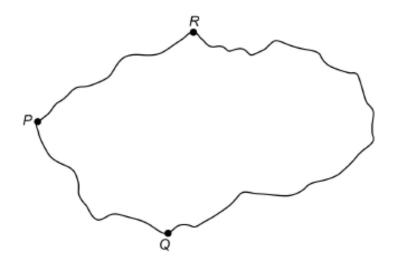
Answer

Question	Answer	Mark	Comments
	Alternative method 1		
	8 ² or 64 and 17 ² or 289	M1	
	$\sqrt{17^2 - 8^2}$ or $\sqrt{225}$ or 15	M1dep	oe implies M2 may be seen on diagram
	8 × 3 × their 15 or 24 × their 15	M1dep	dep on M2 oe eg (8 + 16) × their 15 or 0.5 × 8 × their 15 × 6
	360	A1	SC2 [448.8, 456]
	Alternative method 2		
	$\cos C = \frac{8}{17}$ or $C = [61.9, 62]$	M1	may be seen on diagram
22	17 × sin their [61.9, 62] or [14.9, 15.1]	M1dep	may be seen on diagram oe eg 8 × tan their [61.9, 62]
	8 × 3 × their [14.9, 15.1] or 24 × their [14.9, 15.1] or [357.6, 362.4]	M1dep	dep on M2 oe eg (8 + 16) × their [14.9, 15.1] or 0.5 × 8 × their [14.9, 15.1] × 6
	360	A1	SC2 [448.8, 456]
	Alternative method 3		
	$\sin A = \frac{8}{17}$ or $A = [28, 28.1]$	M1	may be seen on diagram
	17 × cos their [28, 28.1] or [14.9, 15.1]	M1dep	may be seen on diagram oe eg 8 ÷ tan their [28, 28.1]
	8 × 3 × their [14.9, 15.1] or 24 × their [14.9, 15.1] or [357.6, 362.4]	M1dep	dep on M2 oe eg (8 + 16) × their [14.9, 15.1] or 0.5 × 8 × their [14.9, 15.1] × 6
	360	A1	SC2 [448.8, 456]
	Alternative method and Additional	Cuidono	a continued on the next next

Alternative method and Additional Guidance continued on the next page

Question	Answer	Mark	Commer	nts
	Alternative method 4			
	$\cos C = \frac{8}{17}$ or $C = [61.9, 62]$	M1	may be seen on diagram	1
	1/2 × 8 × 17 × sin their [61.9, 62] or [59.9, 60.1]	M1dep	oe	
	6 × their [59.9, 60.1] or [357.6, 362.4]	M1dep	oe	
	360	A1	SC2 [448.8, 456]	
22 cont	Ad	ditional G	Guidance	
	15 without a contradictory value for A method 1, even if not subsequently u		the first two marks on Alt	M1M1
	$\sqrt{17^2 + 8^2}$			M1M0
	3 rd M1 is for the total area and may be calculated in various ways eg using a trapezium + a triangle			
3 rd M1 is for the total area so further work will lose the mark eg 360 seen followed by 360 – 60, answer 300				M1M1M0A0
	May use sine rule or cosine rule but must reach AB = to award the second M1 in Alt 2 or 3			

Most students did not realise that they needed to use Pythagoras' theorem to work out the height of the triangle. Many used 17 cm or 17 - 8 = 9 cm as the height. Those who did work out the height correctly were usually able to give a fully correct solution. Additionally, students, who used Pythagoras' theorem incorrectly by adding the squares of the sides, often went on to gain credit for the special case in the scheme.


3F, Q25

25 Towns P, Q and R are connected by roads PQ, PR and QR.

PR is 10 km longer than PQ.

QR is twice as long as PR.

The total length of the three roads is 170 km

Not drawn accurately

Work out the length of PQ.

[4 marks]

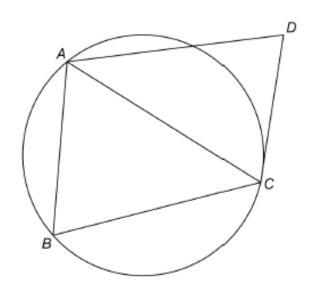
Answer _

Question	Answer	Mark	Comments
	Alternative method 1 – PQ as the unknown		
	x + 10 or 2(x + 10)	M1	any unknown
	x + x + 10 + 2(x + 10) = 170	M1dep	oe any consistent unknown x + their two expressions (with at least one correct) = 170
	4x + 30 = 170	M1dep	oe 4x = 140 must be correct
	35	A1	
	Alternative method 2 – PR as the u	ınknown	
	x – 10 or 2x	M1	any unknown
25	x + x - 10 + 2x = 170	M1dep	oe any consistent unknown x + their two expressions (with at least one correct) = 170
	4x - 10 = 170 or $x = 45$	M1dep	oe 4x = 180 must be correct
	35	A1	
	Alternative method 3 – QR as the u	ınknown	
	$\frac{x}{2}$ or $\frac{x}{2} - 10$	M1	any unknown
	$x + \frac{x}{2} + \frac{x}{2} - 10 = 170$	M1dep	oe any consistent unknown x + their two expressions (with at least one correct) = 170
	2x - 10 = 170 or $x = 90$	M1dep	oe 2x = 180 must be correct
	35	A1	

Mark scheme for Question 25 continues on next page

Question	Answer	Mark	Comments		
	Alternative method 4 – trial and improvement with addition of three lengths				
	A correctly evaluated trial with a difference of 10 (km) between the two shorter lengths and the longest length twice the length of the middle length	M1	may be seen as a subtraction of three numbers from 170		
	A different correctly evaluated trial with a difference of 10 (km) between the two shorter lengths and the longest length twice the length of the middle length	M1dep	may be seen as a subtraction of three numbers from 170		
	35, 45 and 90	A1			
	35	A1			
25 cont	Alternative method 5 – trial and im	proveme	rovement with subtraction from 170		
	A correctly evaluated trial of two lengths subtracted from 170 with a difference of 10 (km) between the two lengths or one length twice the length of the other	M1			
	A different correctly evaluated trial of two lengths subtracted from 170 with a difference of 10 (km) between the two lengths or one length twice the length of the other	M1dep			
	35, 45 and 90	A1			
	35	A1			

Additional Guidance is on the next page


	Additional Guidance	
	If the student attempts more than one method, mark each method and award the highest mark	
	Alt 1 PQ + PQ + 10 + 2(PQ + 10) = 170	M1M1
	Alt 1 PQ + PQ + 10 + 2PR = 170	M1
25 cont	Alt 2 x , $x + 10$ and $2x$ seen on diagram, $4x + 10 = 170$	M1M1M0A0
	Alt 4 35 + 45 + 90 with no choice made	M1M1A1A0
	Alt 4 170 – 30 – 40 – 80 = 20	M1
	Alt 4 170 – 30 – 40 – 60 = 40 incorrect number is doubled	MO
	Alt 5 170 – 30 – 60 = 80	M1

This question was not very well answered and there were a large number of non-attempts. Setting up and solving an equation often led to the correct answer. However, a very large majority of students did not use an algebraic approach. The most common approach was to use trial and improvement with the addition of three lengths; however these were often not evaluated. The most common error involved trials where the length of PQ was doubled rather than PR, with PQ = 40, PR = 50 and QR = 80 often seen.

1H, Q20

20 A, B and C are points on a circle.
CD is a tangent.

20 (a) Assume that triangle ABC is isosceles with AC = BC

Prove that AB is parallel to DC.

[4 marks]

Question	Answer	Mark	Comments	
	Alternative method 1: shows that BAC = ACD and alternate angles			
	ACD = ABC	M1	accept both with same letter on diagram	
	ABC = BAC	M1	accept both with same letter on diagram	
	BAC = ACD and alternate segment (theorem) with M2 awarded	M1dep	dep on M2	
	Other two correct reasons given with M3 awarded	A1	eg (base angles of) isosceles triangle and alternate angles	
20(a)	Alternative method 2: shows that ABC + BCD = 180 and co-interior angles			
20(4)	ACD = ABC	M1	accept both with same letter on diagram	
	ABC = BAC	M1	accept both with same letter on diagram	
	BCD = 180 - (BAC + ABC) + ACD and ABC + BCD = 180 and alternate segment (theorem) with M2 awarded	M1dep	oe dep on M2	
	Other two correct reasons given with M3 awarded	A1	eg (base angles of) isosceles triangle and (co-)interior angles or allied angles	
	The mark scheme for question 20(a) continues on the next page			

Question	Answer	Mark	Comments	
	Alternative method 3: line from midpoint of AB to C is perpendicular to AB and CD			
	Let <i>M</i> be the midpoint of <i>AB</i> and <i>MC</i> is perpendicular to <i>AB</i>	M1	any letter	
	MC is perpendicular to CD	M1		
	AB and CD are both perpendicular to MC with M2 awarded	M1dep	oe dep on M2	
	Three correct reasons given with M3 awarded	A1	eg (perpendicular bisector of) isosceles triangle and MC goes through the centre of the circle and tangent is perpendicular to radius	
	Additional Guidance			
20(a) (cont)	Other correct methods can be found by extending one or more of the lines. For example, by extending BC it is possible to use corresponding angles as a proof instead of alternating angles. This should be reflected in the reasons required for the last mark			
	In the scheme, ACD (for example) means angle ACD and not triangle ACD			
	Accept equality of angles indicated by not by arcs	with the same letter, but		
	Accept (angle) B for angle ABC Do not accept (angle) A for angle BAC or (angle) C for angle ACB unless intention is clear from annotation of the diagram			
	For the third mark in alternative meth for angles if clearly marked on the dia	ept algebraic expressions		
	Do not award marks for an argument based only on assumed values of angles, but ignore 60° marked on diagram, which is for (b)			
	Ignore an angle marked at ADC			
	Ignore incorrect statements that do n eg ACD is an isosceles triangle (but			

20 (b)	(b) In fact, triangle ABC is equilateral. Tick the two boxes for the statements that must be correct.			
	AB is parallel t	o DC		[1 mark]
	AC bisects and	gle <i>BCD</i>		
	AC bisects and	gle <i>BAD</i>		
Question	Answer	Mark	Comments	
	✓ AB is parallel to DC			
	✓ AC hisects angle BCD	B1		

20(b)

Very few students scored more than 2 marks in part (a) with most working on the assumption that *ABCD* was a parallelogram. Those who made some progress often failed to give any reasons for their statements. Students should give a reason for each calculation or statement in geometric proof questions.

Additional Guidance

Less than a quarter of all students were successful in part (b). Many did not select the first statement, even though it had been given in part (a). Although they had been told to tick two boxes, a minority of students only ticked one.

AC bisects angle BAD

2H, Q20

20 Expressions for consecutive triangular numbers are

$$\frac{n(n+1)}{2}$$
 and $\frac{(n+1)(n+2)}{2}$

Prove that the sum of two consecutive triangular numbers is always a square number.

[4 marks]

Question	Answer	Mark	Comments	
	Alternative method 1			
	$\frac{n^2 + n}{2}$ or $\frac{n^2 + 2n + n + 2}{2}$ or $\frac{n^2 + 3n + 2}{2}$	M1	may be seen in stages eg $n^2 + n$ followed by $\frac{n^2 + n}{2}$	
	$\frac{n^2+n}{2} \text{ and } \frac{n^2+2n+n+2}{2}$ or $\frac{n^2+n}{2} \text{ and } \frac{n^2+3n+2}{2}$	M1dep	may be seen in stages $eg \ n^2 + n \text{ followed by } \frac{n^2 + n}{2}$ and $n^2 + 3n + 2 \text{ followed by } \frac{n^2 + 3n + 2}{2}$ implies M2	
	$\frac{2n^2 + 4n + 2}{2}$ or $n^2 + 2n + 1$ with M2 seen	A1	oe single fraction with terms collected $eg \ \frac{4n^2 + 8n + 4}{4}$	
20	$n^2 + 2n + 1$ and $(n + 1)^2$ with M2A1 seen	A1	allow $(n + 1)(n + 1)$ for $(n + 1)^2$	
	Alternative method 2			
	$\frac{n+1}{2}(n+n+2)$	M1	oe eg $(n+1)\left(\frac{n}{2}+\frac{n+2}{2}\right)$	
	$\frac{n+1}{2}(2n+2)$ or $\frac{n^2+n}{2} + \frac{n^2+n}{2} + \frac{2n+2}{2}$ with M1 seen	M1dep		
	$\frac{2n^2 + 4n + 2}{2}$ or $n^2 + 2n + 1$ with M2 seen	A1	oe single fraction with terms collected $eg \ \frac{4n^2 + 8n + 4}{4}$	
	$n^2 + 2n + 1$ and $(n + 1)^2$ with M2A1seen	A1	allow $(n + 1)(n + 1)$ for $(n + 1)^2$	

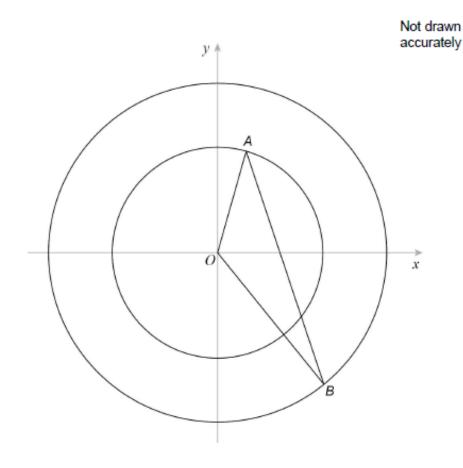
Mark scheme and Additional Guidance continue on the next two pages

Question	Answer	Mark	Comments
	Alternative method 3		
20 cont	$\frac{n+1}{2}(n+n+2)$	M1	oe eg $(n+1)\left(\frac{n}{2}+\frac{n+2}{2}\right)$
	$\frac{n+1}{2}(2n+2)$ with M1 seen	M1dep	oe eg $\frac{(n+1)(2n+2)}{2}$
	(n + 1) ² with M2 seen	A2	A1 $2(n+1)\frac{n+1}{2}$ or $\frac{2(n+1)^2}{2}$ allow $(n+1)(n+1)$ for $(n+1)^2$

Additional Guidance is on the next page

	Additional Guidance			
	Only substituting in values of n	M0M0A0A0		
	Consistently using a different letter to n can score up to M1M1A1A1			
	Using two different letters consistently within the two fractions (eg n replaced by x in the first equation and n replaced by y in the second equation) can score a maximum of M1M1A0A0 unless recovered to the same letter			
	Multiplying fractions instead of adding can score a maximum of M2A0			
	For M marks condone eg n2 for 2n etc			
	$n^2 + n/2$ and $n^2 + 3n + 2/2$ recovered to $\frac{2n^2 + 4n + 2}{2}$	M1M1A0A0		
	and/or $n^2 + 2n + 1$ and/or $(n + 1)^2$			
20 cont	$n^2 + n/2$ and $n^2 + 3n + 2/2$ not recovered	M0M0A0A0		
	$n^2 + n$ and $n^2 + 3n + 2$ recovered to $\frac{2n^2 + 4n + 2}{2}$	M1M1A0A0		
	and/or $n^2 + 2n + 1$ and/or $(n + 1)^2$			
	$n^2 + n$ and $n^2 + 3n + 2$ not recovered	M0M0A0A0		
	Equating to n^2 in working can score a maximum of M1M1A0A0			
	(equating to eg x^2 can score up to M1M1A1A1)			
	1n is allowed for n throughout			
	Alts 2 and 3			
	$\frac{n+1}{2}(2n+2)$ with M1 seen scores M2			
	If they attempt to expand $(n + 1)(2n + 2)$ use Alt 2			
	If they attempt to expand $\frac{1}{2}(2n+2)$ use Alt 3			

Although some excellent proofs were seen, this question was not well answered. Many only substituted in values for n. Errors were made in expansions and it was quite common for students to incorrectly process the sum of the two algebraic fractions.


3H, Q27

27 In this question, all lengths are in centimetres.

A is a point on a circle, centre O.

B is a point on a different circle, centre O.

AB = 20

The equation of the larger circle is $x^2 + y^2 = 144$

radius of smaller circle: radius of larger circle = 4:5

Work out the size of angle AOB.

[5 marks]

Answer _____ degrees

Question	Answer	Mark	Commer	nts
	√144 or 12	B1	radius of larger circle may be seen on diagram	1
	$\frac{4}{5}$ × their 12 or 9.6	M1	their 12 must be a value may be seen on diagram	
	$\frac{\text{their } 12^2 + \text{their } 9.6^2 - 20^2}{2 \times \text{their } 12 \times \text{their } 9.6}$ or $\frac{144 + 92.16 - 400}{230.4}$ or $-\frac{32}{45}$ or -0.71	M1dep	oe	
27	\cos^{-1} their $-\frac{32}{45}$	M1dep	dep on M2	
	135.()	A1		
	Additional Guidance			
	144			В0
	$\frac{4}{5}$ × 144 = 115.2			M1
	$(\cos AOB =) \frac{144^2 + 115.2^2 - 20^2}{2 \times 144 \times 115.2}$			M1M0A0
	12 seen, but a different value used for the radius of the larger circle cannot score B1M1			
	x + y = 12 seen, but $x = 6$ used to find radius $OA = 4.8$			B0M1

This question had one of the lowest numbers of completely correct solutions, although more than half of the students gained some marks. It was very clear that if the cosine rule had been recalled and used correctly, then the proportion of fully correct answers would have been significantly higher. It was disappointing to see responses where the student understood the method they needed to use (cosine rule) but were unable to make any further correct progress. Many students correctly stated the radius of the larger circle to be 12 but a significant number were not able to interpret the equation of the circle. Common errors included: using 144 as the radius for the larger circle; using 80 and 64 as the radii of the circles; using right-angled triangle trigonometry; and incorrectly rearranging the cosine rule to find the angle AOB. Students should be reminded that if their calculator shows an error when trying to find the angle using the cosine rule, they should go back and check their working.

Contact us

Our friendly team will be happy to support you between 8am and 5pm, Monday to Friday.

Tel: 0161 957 3852

Email: maths@aqa.org.uk
Twitter: @AQAMaths

aqa.org.uk