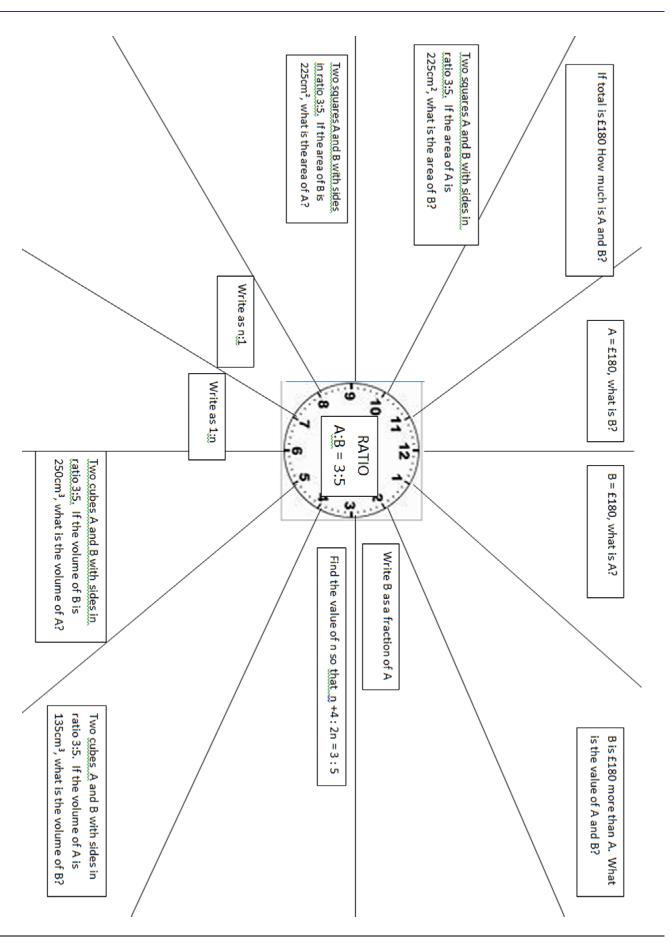


GCSE **MATHEMATICS**

Hub school network meetings

Revision techniques, Same Surface Different Deep (SSDD) booklet

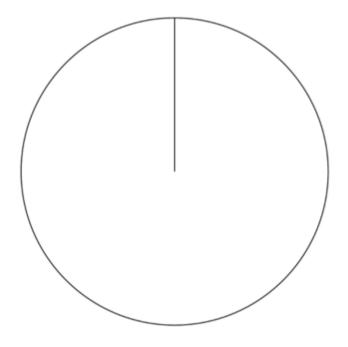

Published: Spring 2020

Contents

Contents	Page
SSDD Revision Clock Ratio	4
SSDD Quadratics	5
SSDD Pie charts	6
SSDD Sequences	14
SSDD Triangles	19

SSDD Pie charts

S19 3F Q17(b)


17 (b) In one hour the shop sells 180 scoops of ice cream.

The number of scoops of each flavour is shown in the table.

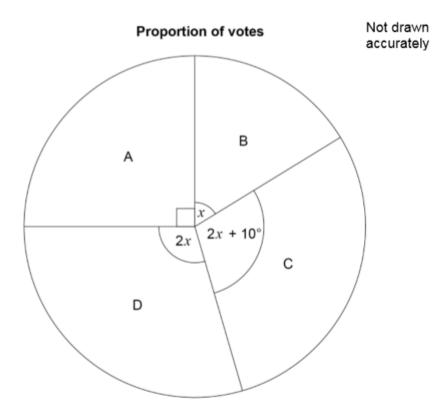
Flavour	Vanilla	Strawberry	Chocolate	Mint
Number of scoops	45	75	50	10

Complete the pie chart to represent the data.

[4 marks]

N18 3F Q2

2 In a pie chart, one sector represents $\frac{1}{4}$ of the data.


What is the angle of that sector? Circle your answer.

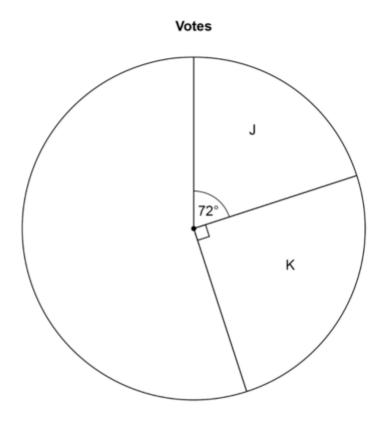
[1 mark]

4° 25° 45° 90°

N17 1F Q30

30 The four candidates in an election were A, B, C and D.
The pie chart shows the proportion of votes for each candidate.

Work out the probability that a person who voted, chosen at random, voted for C.


[4 marks]

S18 3F Q19

19 In an election there were four candidates, J, K, L and M.

Fran is drawing a pie chart to show the results.

The sectors for J and K have been drawn.

19 (a) Twice as many people voted for L as voted for M.

Complete the pie chart.

[3 marks]

19 (b) Altogether, 16 200 people voted.

How many voted for J?

[2 marks]

MS Pie charts

S19 3F Q17(b)

	Alternative method 1		
	360 ÷ 180 or 2	M1	implied by a correct angle or implied by a correctly drawn angle in pie
			chart ± 2°
17(b)	Any two of 45 × their 2 or 90° 75 × their 2 or 150° 50 × their 2 or 100° 10 × their 2 or 20°	M1dep	implied by any two correctly drawn angles in pie chart ± 2°
	Pie chart with four sectors drawn, two of which are correctly drawn with angles from 90°, 150°, 100° and 20°	M1dep	± 2° lines must be ruled
	Fully correct pie chart and sectors labelled with flavours	A1	± 2° lines must be ruled

	Alternative method 2				
	$45 \div 180 \times 100 \text{ or } 25\%$ or $75 \div 180 \times 100 \text{ or } 41\frac{2}{3}\% \text{ or } 42\%$ or $50 \div 180 \times 100 \text{ or } 27\frac{7}{9}\% \text{ or } 28\%$ or $10 \div 180 \times 100 \text{ or } 5\frac{5}{9}\% \text{ or } 6\%$	M1	oe		
17(b) cont	Any two of 45 ÷ 180 × 360 or 90° 75 ÷ 180 × 360 or 150° 50 ÷ 180 × 360 or 100° 10 ÷ 180 × 360 or 20°	M1dep	implied by any two corre angles in pie chart ± 2°	ctly drawn	
	Pie chart with four sectors drawn, two of which are correctly drawn with angles from 90°, 150°, 100° and 20°	M1dep	± 2° lines must be ruled		
	Fully correct pie chart and sectors labelled with flavours	A1	± 2° lines must be ruled		
	Additional Guidance				
	All four sectors must be correctly labelled with letters or words for the accuracy mark				

N18 3F Q2

	90°	B1		
2	Additional Guidance			

N17 1F Q30

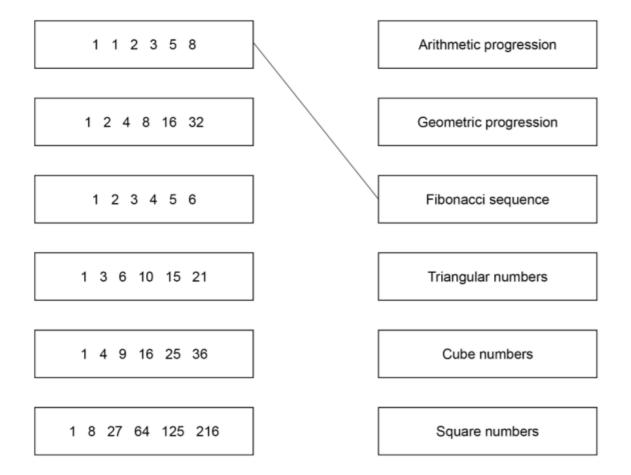
	Alternative method 1		
	x + 2x + 2x + 10 or $5x + 10or x + 2x + 2x + 10 + 90or 5x + 100$	M1	oe
30	x + 2x + 2x + 10 = 360 - 90 or $5x + 10 = 270$ or $x + 2x + 2x + 10 + 90 = 360$ or $5x + 100 = 360$ or $5x = 260$	M1dep	oe
	(x =) 52 or 2x = 104 or $2x + 10 = 114$	A1	may be on diagram
	$\frac{114}{360}$ or $\frac{57}{180}$ or $\frac{38}{120}$ or $\frac{19}{60}$ or 0.31(6) or 0.317 or 0.32 or 31(.6)% or 31.7% or 32%	B1ft	ft $\frac{2 \times \text{their } 52 + 10}{360}$ or $\frac{\text{their angle for C}}{360}$

	Alternative method 2				
	$\frac{90}{360} + \frac{x}{360} + \frac{2x}{360} + P(C) = 1$		oe		
	or $\frac{90}{360} + \frac{x}{360} + \frac{2x}{360} + \frac{2x+10}{360}$	M1			
	or $\frac{2x+10}{5x+100}$				
	$\frac{90}{360} + \frac{x}{360} + \frac{2x}{360} + \frac{2x+10}{360} = 1$	M1dep	oe		
	(x =) 52 or 2x = 104 or $2x + 10 = 114$	A1	may be on diagram		
30 cont	$\frac{114}{360}$ or $\frac{57}{180}$ or $\frac{38}{120}$ or $\frac{19}{60}$	B1ft	ft $\frac{2 \times \text{their } 52 + 10}{360}$		
	or 0.31(6) or 0.317 or 0.32 or 31(.6)% or 31.7% or 32%		or their angle for C 360		
	Additional Guidance				
	Ignore incorrect simplification or conv	ersion aft	ter $\frac{114}{360}$ oe	M1M1A1B1	
	$\frac{360-10-90}{5}$ oe			M1M1	
	x + 2x + 2x + 10 followed by $6x + 10$	= 270		M1M0	
	Do not accept decimal within fraction for final answer if correct fraction not seen				
	The follow through is not available if	A1 award	ed		

S18 3F Q19

	16 200 ÷ 360 or 45 or 360 ÷ 16 200 or 0.022 or 16 200 × $\frac{72}{360}$	M1	oe		
	3240	A1			
	Add	ditional G	uidance		
19(b)	Do not ignore further working				
	16 200 – 3240 = 12 960			M1A0	
	3240 16200 on answer line	M1A0			
	16 200 + 4 + 90	M1			
	16 200 + 5				
	20% of 16 200 without further correct v	MO			
	360 – 72 – 90 or 198 M1 oe 100(%) – 20(%) – 25(%)			or 55(%)	
			Correct line drawn implies M1M1		
	their 198 ÷ 3 (× 2) or 66 or 132	M1	their 55 ÷ 3 (× 2) or 18(.3) or 36(.6) or 37		
	Correct line drawn within 2° and	A1	L in the section with [130)°, 134°]	
19(a)	sections labelled correctly		M in the section with [64	°, 68°]	
	Additional Guidance				
	Correct line drawn must be a ruled line				
	Angles may be on the diagram				
	Mark diagram first, if line out of tolerance, check working for method marks				

SSDD Sequences


S19 2F Q28

28	A linear sequence	starts				
		11	21	31	41	
	Work out an expres	ssion for th	e <i>n</i> th term	of the se	quence.	[2 marks]
N18 1	F Q14					
14	The n th term of a s	equence i	s 5 <i>n</i> -	- 2		
	Work out the 3rd to Circle your answer					[1 mark]
	51		5		123	13
N18 3	3F Q14					
14 (b)	The term-to-term rule	of a differer	nt sequence	e is		
		Subtrac	ct 1 and mu	Itiply by 5		
	The third term of this s	equence is	120			
					120	
	Work out the first term					[2 marks]
14 (a)	The term-to-term rule	of a sequer	nce is			
		Add 8 a	and divide b	y 2		
	The first term of the se	equence is	-24			
	Work out the next two	terms.				[2 marks]

S18 2F Q23

23 Match each sequence to its description.
One has been done for you.

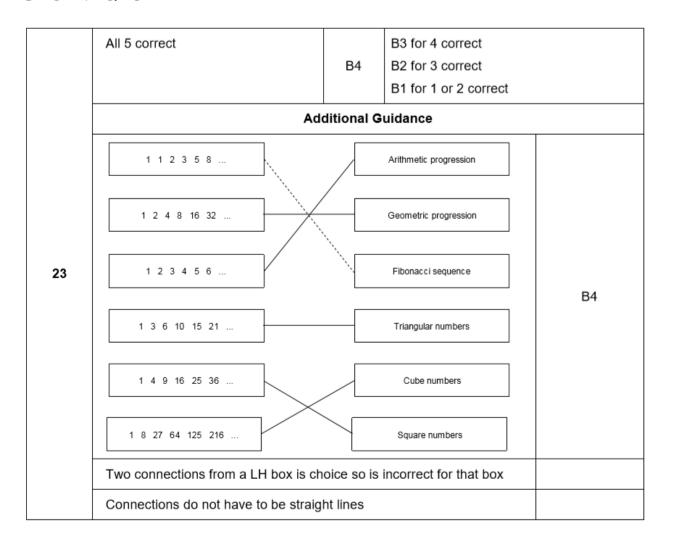
[4 marks]

MS Sequences

S19 2F Q28

	10n + 1 or 1 + 10n	B2	B1 10n()			
	Additional Guidance					
	Ignore LHS of formula given eg $Tn = 10n + 1$ B2					
	Condone $n = 10n + 1$ or n th term = $10n + 1$ B2					
	Allow other variables eg $10x + 1$ B2					
28	Allow a multiplication sign eg $10 \times n + 1$ or $n \times 10 + 1$ B2					
	<i>n</i> 10 B1					
	n10 + 1					
	10n + 1n B0					
	Choice eg 10n + 1 and 1n + 10			В0		

N18 1F Q14


14	13	B1	
----	----	----	--

N18 3F Q14

	-8	B1		
	0	B1ft	ft their –8	
	Additional Guidance			
14(a)	Mark answer line first If either part of answer line is blank lo	ok for tern	ns in working	
	-20 and -6			B0B1ft
	-20 and -16		B0B0ft	

	+ 5 then + 1	M1	implied by 2nd term 25 or correct first term for their 25	
	6	A1		
14(b)	Additional Guidance			
	6, 25 with no working seen or on dotted lines			M1A1
	2nd term 23 and 1st term 5.6 is the correct first term for their 25			M1A0
	25 with no incorrect working			M1

S18 2F Q23

SSDD Triangles

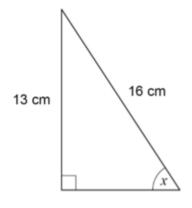
S19 3F Q29

29 Two sides of a triangle have lengths 13 cm and 27 cm

Which of these is a **possible** length of the other side? Circle your answer.

[1 mark]

13 cm

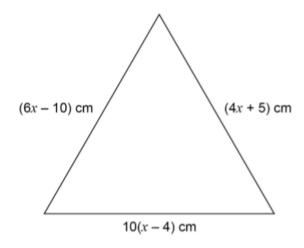

14 cm

27 cm

40 cm

S19 3F Q30

30 Here is a right-angled triangle.


Not drawn accurately

Use trigonometry to work out the size of angle x.

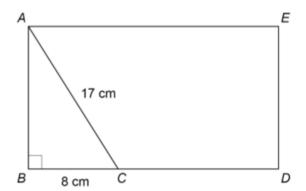
[2 marks]

N18 2F Q25

25 This triangle is equilateral.

Not drawn accurately

Is the perimeter of the triangle greater than one metre? You **must** show your working.


[5 marks]

S19 2F Q22

22 The diagram shows rectangle ABDE and right-angled triangle ABC.

AC = 17 cm

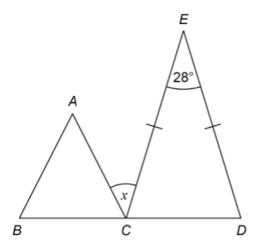
BC = 8 cm

Not drawn accurately

BC: CD = 1:2

Work out the area of rectangle ABDE.

[4 marks]


S18 2F Q16(a)

16 (a) BCD is a straight line.

Triangle ABC is equilateral.

CE = DE

Not drawn accurately

Work out the size of angle x.

[4 marks]

MS Triangles

S19 3F Q29

29	27 cm	B1	
1			

S19 3F Q30

	Alternative method 1				
	$\sin x = \frac{13}{16}$ or $\sin^{-1} \frac{13}{16}$	M1	oe $\sin x = 0.8125$		
	54(.3)	A1			
	Alternative method 2				
	$\cos x = \frac{13}{16}$ or $\cos^{-1} \frac{13}{16}$ and 90 - their [35.6, 36]	M1	oe		
	54(.3)	A1			
30	Alternative method 3				
	$\cos x = \frac{\sqrt{16^2 - 13^2}}{16}$		oe		
	or	M1			
	$\tan x = \frac{13}{\sqrt{16^2 - 13^2}}$				
	54(.3)	A1			
	Additional Guidance				
	$\sin = \frac{13}{16}$ or $\sin \frac{13}{16}$ or $\sin^{-1} = \frac{13}{16}$ unless recovered			МО	
	Answer 54 from scale drawing with no trigonometry			M0A0	

N18 2F Q25

	4x + 5 = 6x - 10 or $4x + 5 = 10(x - 4)$ or $6x - 10 = 10(x - 4)$ 4x - 6x = -10 - 5 or $-2x = -15$ or $4x - 10x = -40 - 5$ or $-6x = -45$ or $6x - 10x = -40 + 10$ or $-4x = -30$	M1	oe eg $4x + 5 + 6x - 10 = 2$ condone $10x - 4$ for 10 oe collection of terms eg $4x + 6x - 20x = -80$ or $-10x = -75$ condone $10x - 4$ for 10 eg $4x - 10x = -4 - 5$ or $6x - 10x = -4 + 10$)(x - 4)) - 5 + 10
	(x =) 7.5	A1	oe may be implied by (side length =) 35 or (perimeter =) 105	
25	(6 × their 7.5 – 10) × 3 or (4 × their 7.5 + 5) × 3 or 10 × (their 7.5 – 4) × 3 or 35 × 3 or 6 × their 7.5 – 10 + 4 × their 7.5 + 5 + 10 × (their 7.5 – 4) or 20 × their 7.5 – 45 or 105	M1dep	oe dep on M1M1 condone $10x - 4$ for 10 must show working if M	
	105 and Yes	A1	oe eg 1.05 and Yes	
	Additional Guidance			
	4x + 5 = 6x - 10 = 10(x - 4)			M1
	Condone $10x - 4$ for $10(x - 4)$ for up to M3			

S19 2F Q22

	Alternative method 1			
	8 ² or 64 and 17 ² or 289	M1		
	$\sqrt{17^2 - 8^2}$ or $\sqrt{225}$ or 15	M1dep	oe implies M2 may be seen on diagram	
	8 × 3 × their 15 or 24 × their 15	M1dep	dep on M2 oe eg (8 + 16) × their 15 or 0.5 × 8 × their 15 × 6	
	360	A1	SC2 [448.8, 456]	
	Alternative method 2			
	$\cos C = \frac{8}{17}$ or $C = [61.9, 62]$	M1	may be seen on diagram	
22	17 × sin their [61.9, 62] or [14.9, 15.1]	M1dep	may be seen on diagram oe eg 8 × tan their [61.9, 62]	
	8 × 3 × their [14.9, 15.1] or 24 × their [14.9, 15.1] or [357.6, 362.4]	M1dep	dep on M2 oe eg (8 + 16) × their [14.9, 15.1] or 0.5 × 8 × their [14.9, 15.1] × 6	
	360	A1	SC2 [448.8, 456]	
	Alternative method 3			
	$\sin A = \frac{8}{17}$ or $A = [28, 28.1]$	M1	may be seen on diagram	
	17 × cos their [28, 28.1] or [14.9, 15.1]	M1dep	may be seen on diagram oe eg 8 ÷ tan their [28, 28.1]	
	8 × 3 × their [14.9, 15.1] or 24 × their [14.9, 15.1] or [357.6, 362.4]	M1dep	dep on M2 oe eg (8 + 16) × their [14.9, 15.1] or 0.5 × 8 × their [14.9, 15.1] × 6	
	360	A1	SC2 [448.8, 456]	

	Alternative method 4			
	$\cos C = \frac{8}{17}$ or $C = [61.9, 62]$	M1	may be seen on diagram	
	$\frac{1}{2}$ × 8 × 17 × sin their [61.9, 62]	M1dep	oe	
	or [59.9, 60.1]			
	6 × their [59.9, 60.1] or [357.6, 362.4]			
	360			
22 cont	Ad			
	15 without a contradictory value for <i>A</i> method 1, even if not subsequently u	M1M1		
	$\sqrt{17^2 + 8^2}$		M1M0	
	3 rd M1 is for the total area and may b using a trapezium + a triangle			
	3 rd M1 is for the total area so further			
	eg 360 seen followed by 360 – 60, ar	M1M1M0A0		
	May use sine rule or cosine rule but must reach AB = to award the second M1 in Alt 2 or 3			

S18 2F Q16(a)

16(a)	180 ÷ 3 or 60	M1	oe eg 60 + 60 + 60 = 180		
	(180 – 28) ÷ 2 or 152 ÷ 2 or 76	M1	oe eg 76 + 76 + 28 = 180		
	180 – their 60 – their 76	M1dep	oe eg 44 + 60 + 76 = 180 dep on M1M1		
	44	A1			
	Additional Guidance				
	60 or 76 seen in appropriate place on mark for each				
	Answer 44 not from wrong working	M3A1			
	180 – 28 ÷ 2 unless recovered			2nd M0	

Contact us

Our friendly team will be happy to support you between 8am and 5pm, Monday to Friday.

Tel: 0161 957 3852

Email: maths@aqa.org.uk
Twitter: @AQAMaths

aqa.org.uk