

GCSE MATHEMATICS

Hub school network meetings

Supporting GCSE Mathematics revision booklet

Published: Spring 2020

Contents

Contents	Page
AQA Teaching Guidance document sample	4
Fractions: Big picture example	6
Fractions: Questions	7
Transformations: Building a big picture	8
Revision cards: Knots – just for fun!	9
Revision cards: Maths examples	11

AQA

A9

Plot graphs of equations that correspond to straight-line graphs in the coordinate plane; <u>use the form y = mx + c</u> to identify parallel lines; find the equation of the line through two given points, or through one point with a given gradient

Teaching Guidance

Students should be able to:

- recognise that equations of the form y = mx + c correspond to straight-line graphs in the coordinate plane
- draw graphs of functions in which y is given explicitly or implicitly in terms of x
- complete tables of values for straight-line graphs
- · calculate the gradient of a given straight-line given two points or from an equation
- manipulate the equations of straight lines so that it is possible to tell whether lines are parallel or not
- · work out the equation of a line, given two points on the line or given one point and the gradient.

Notes

Tables of values may or may not be given. See A10

Examples

54

- 1 Draw the graph of y = 3x 1 (both with and without a table of values).
- 2 Draw the graph of x + 2y = 10
- 3 Show clearly that the lines 2x + y = 5 and 4x = 3 2y are parallel.
- 4 A has coordinates (3, -5). B has coordinates (6, 7).

Work out the equation of the straight line AB.

Version 2.1

A9h

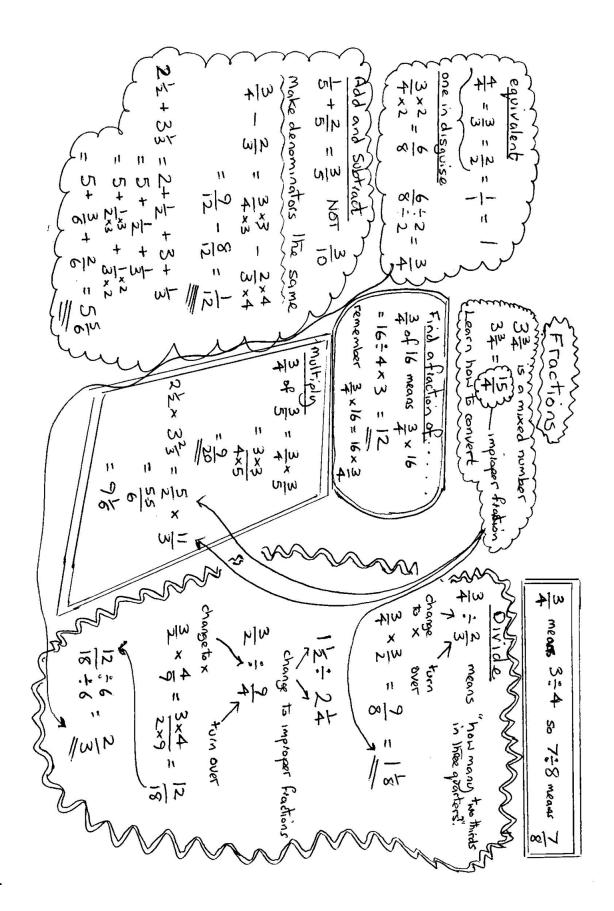
Plot graphs of equations that correspond to straight-line graphs in the coordinate plane; <u>use the form y = mx + c</u> to identify parallel lines **and perpendicular lines**; <u>find</u> the equation of the line through two given points, or through one point with a given gradient

Teaching Guidance

Students should be able to:

- · work out the gradients of lines that are parallel and perpendicular to a given line
- show that two lines are parallel or perpendicular using gradients
- manipulate the equations of straight lines so that it is possible to tell whether or not lines are perpendicular
- know that the gradients of perpendicular lines are the negative reciprocal of each other.

Notes


Tables of values may or may not be given.

See A16h

Examples

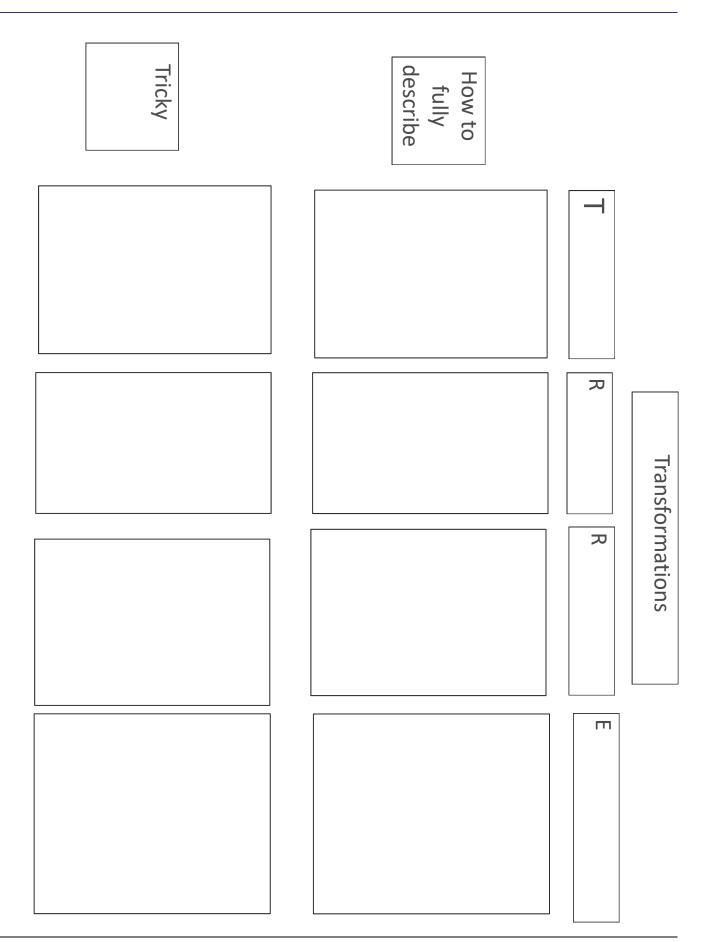
- 1 Work out the gradient of a line that is perpendicular to the line 2x + 5y = 6
- 2 A is (2, 3), B is (5, 8), C is (7, 6) and D is (1, -4).

Show that ABCD is a trapezium.

Fractions.

1. Show how you would work out $\frac{2}{3}$ of an hour.

2. A plastic supermarket container holds $2\frac{1}{4}$ litres of milk. If one litre of milk is $1\frac{3}{4}$ pints, how many pints of milk are in the container?

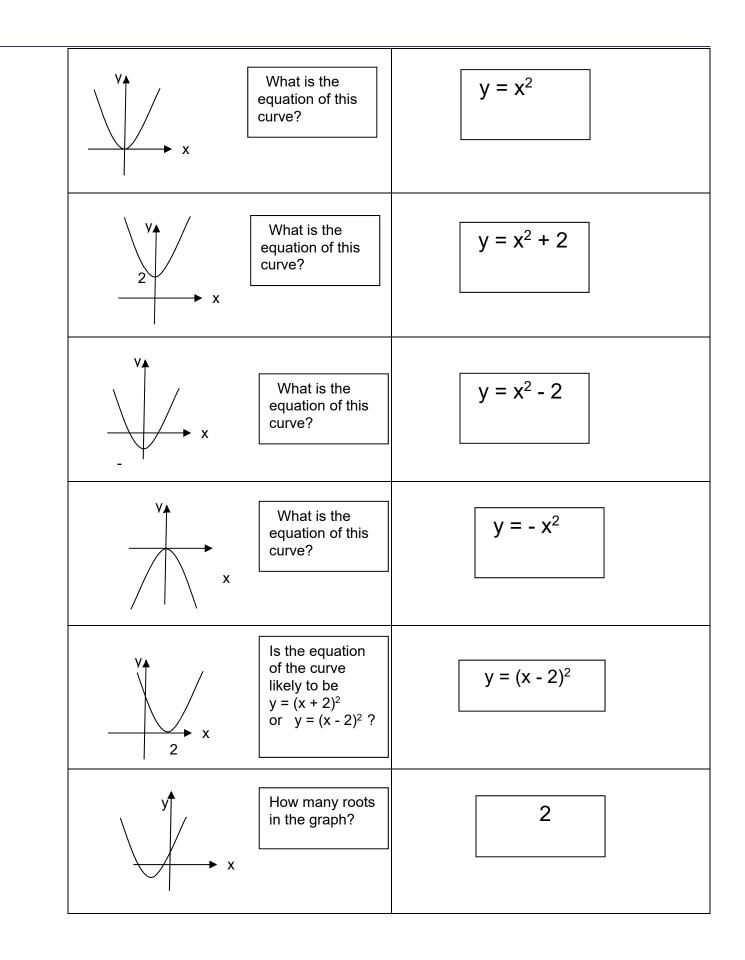

3. John says $\frac{1}{3}$ of an hour plus $\frac{1}{2}$ of an hour plus $\frac{1}{6}$ of an hour, is 56 minutes. Show why he is wrong.

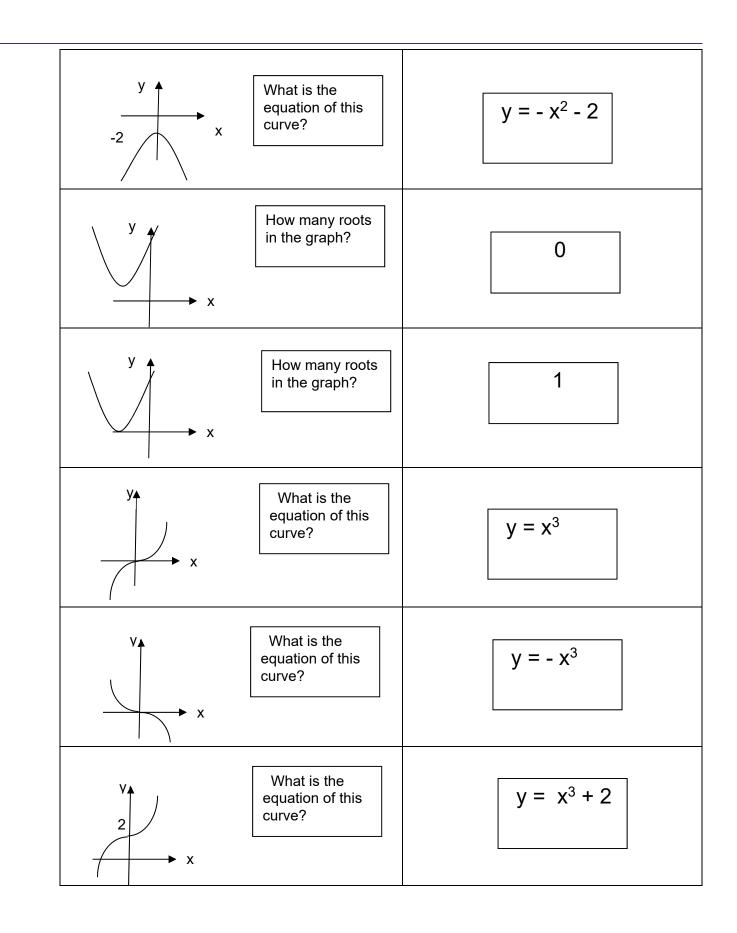
4. A kitten weighs $\frac{5}{8}$ kg. It increases its weight by $\frac{1}{5}$ kg each week. How much will the kitten weigh in 3 weeks' time?

5. I want to cut a piece of wood $4\frac{1}{2}$ metres long into lengths each $\frac{3}{4}$ of a metre long? How many lengths can be cut?

6. Put these fractions in order, smallest first $\frac{1}{2}, \frac{4}{5}, \frac{3}{4}, \frac{2}{3}$.

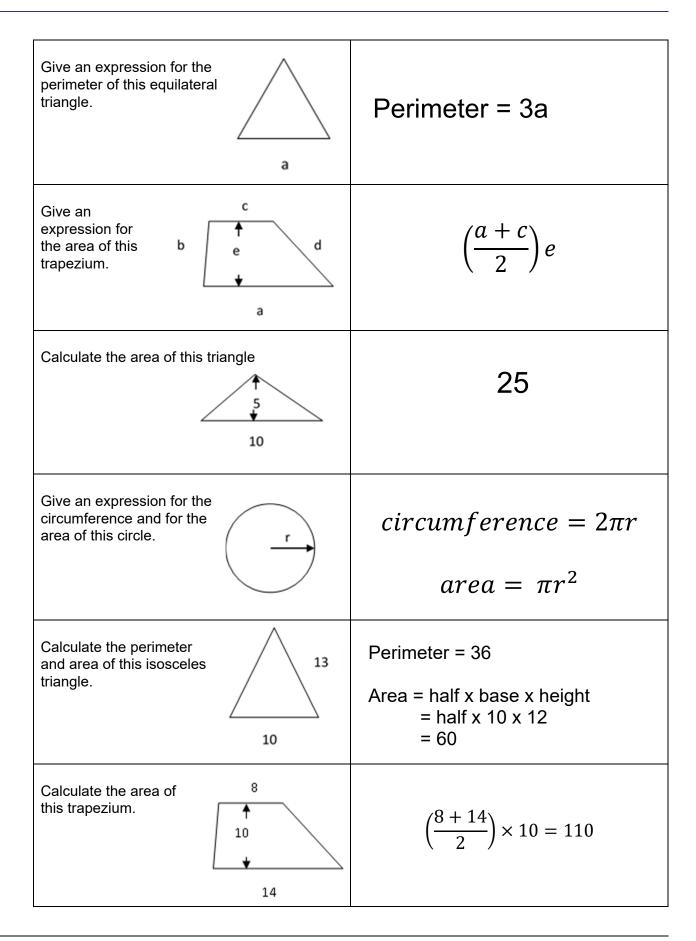
7. An athlete weighed $14\frac{1}{2}$ stones before training for a marathon. After training she lost $1\frac{1}{7}$ stones. How much did she weigh after training?




Knots

ſ

	Overhand knot.
	Used to make other knots.
Name the knot and one use.	
	Figure of eight knot.
	Used as a stop knot.
Name the knot and one use.	Reef knot.
	Used to join two similar diameter ropes.
Name the knot and one use.	
	Sheet bend knot.
	Used to join two different diameter ropes.
Name the knot and one use.	


[*	
	Clove hitch knot.
	Used to fasten a rope to a pole.
Name the knot and one use.	
	Sheepshank knot.
	Used to shorten a rope or overcome a frayed section.
Name the knot and one use.	<u>, </u>
Name the knot and one use.	Grinner knot. Used for securing fish hooks.
	Bowline.
	Used to form a non-slip loop
Name the knot and one use.	

Factorise $3x - 9$	3(<i>x</i> – 3)
Factorise completely $3x^2 - 9x$	3x(x-3)
Factorise $x^2 - 2x$	<i>x</i> (<i>x</i> – 2)
Factorise $a^2 - ab$	a(a-b)
Factorise completely $9a^2b^3 - 12a^3b^5$	$3a^2 b^3 (3 - 4ab^2)$
Factorise completely $9x^2 - 3x$	3x(3x - 1)

Factorise $x^2 + 3x + 2$	(x+2)(x+1)
Factorise $x^2 + x - 2$	(x-1)(x+2)
Factorise $x^2 - 2x - 3$	(x - 3)(x + 1)
Factorise $x^2 - 4x + 3$	(x - 3)(x - 1)
Factorise $x^2 - 16$	(x + 4)(x - 4)
Factorise completely $2x^2 - 8$	2(x+2)(x-2)

Give an expression for the area and for the perimeter of this rectangle. a b	Area = ab Perimeter = 2a + 2b
Give an expression for the area of this right angled triangle. a b	$\frac{ab}{2}$
Give an expression for the perimeter of this right angled triangle.	a+b+c
Give an expression for the area of this parallelogram.	ас
Give an expression for the area and for the perimeter of this rhombus.	Area = <i>ac</i> Perimeter = 4a
Give an expression for the area and for the perimeter of this square.	Area = m² Perimeter = 4m

Contact us

Our friendly team will be happy to support you between 8am and 5pm, Monday to Friday.

Tel: 0161 957 3852 Email: <u>maths@aqa.org.uk</u> Twitter: <u>@AQAMaths</u>

aqa.org.uk