

AQA GCSE Physics Required Practicals DIY equipment and tips for technicians

Marcin Poblocki AQA Practical Adviser

- 1. Specific heat capacity (solid)
- 2. Thermal insulation Physics specification only
- 3. Resistance (wire)
- 4. V-I characteristics (filament bulb, resistor, diode)
- 5. Density
- 6. Light (reflection and refraction)
- 7. Force and extension (spring)
- 8. Acceleration (F=ma)
- 9. Waves (ripple tank) Physics specification only
- 10. Radiation and absorption (Leslie cube)

Technicians often find the following activities more challenging:

- Specific heat capacity
- Acceleration
- Waves
- Radiation and absorption

Sometimes these activities involve expensive apparatus that has to be boughtin.

The following slides detail some simple and inexpensive DIY equipment that technicians can put together themselves.

Specific heat capacity

Specific heat capacity

m _{copper} [kg]	0.201
T _{copper} [°C]	87
m _{water} [kg]	0.265
T _{Water} [°C]	17
T _{Water & Copper} [°C]	21
c _{Water} [J/kg*K]	4198.9
Calculated value	
c _{copper} [J/kg*K]	337.2
Real Value	
c _{copper} [J/kg*K]	386.0

- Use a metal toy car
- Put extra 200g to 400g masses on top of the car
- Create a track using meter rulers
- Use a smartphone camera if possible

Acceleration - results

m _{Car} = 461 g	F = 0.2 N	m _{car} = 461 g	F = 0.4 N
L [cm]	t [s]	L [cm]	t [s]
20.0	0.94	20.0	0.77
40.0	1.77	40.0	<mark>1.38</mark>
60.0	2.44	60.0	1.91
80.0	2.89	80.0	2.30
100.0	3.16	100.0	2. <mark>4</mark> 4
F = 0.2 N	m _{car} = 261 g	F = 0.4 N	m _{car} = <mark>4</mark> 61 g
L [cm]	t [s]	L [cm]	t [s]
20.0	0.64	20.0	0.59
40.0	1.13	40.0	1.03
60.0	1.52	60.0	1.43
80.0	1.77	80.0	<mark>1.6</mark> 5
100.0	1.00	100.0	4 75

DIY ripple tank

DIY ripple tank

DIY ripple tank

Making a Leslie "can"

Exactly same results as using Leslie cube.

Thank you