

Co-teaching Entry Level Certificate and GCSE Combined Science: Trilogy

Physics

Component 5 – Energy, forces and the structure of matter Component 6 – Electricity, magnetism and waves

This resource provides guidance for co-teaching our new Entry Level Certificate (ELC) Science and Foundation Tier GCSE Combined Science: Trilogy specifications. Our ELC is designed for students who may not achieve a grade 1, but you can also use it as a motivational tool to build confidence for your Foundation Tier students.

Physics: Component 5 – Energy, forces and the structure of matter

ELC Outcomes	Summary of content covered in ELC	Same theme covered in Combined but extra content	New content on same topic	Rest of Combined Foundation content
 Changes in energy storage 	When a kettle boils the way energy is stored in a simple system changes. Not all the changes are useful. Different devices have different energy wastages.	6.1.1.1 Energy stores and systems: calculations required.	6.1.1.2 Changes in energy: kinetic energy; elastic potential energy; gravitational potential energy. 6.1.1.3 Energy changes in systems: Specific heat capacity	 6.8 Key ideas: Models Cause and effect Action at a distance Proportionality Use of mathematical form 6.1.1.4 Power: Equation and calculations. 6.3.2.1 Internal energy: changes of state 6.3.2.2 Temperature changes in a system and specific heat capacity: equations and calculations. 6.3.2.3 Changes of heat and specific latent heat: equations and calculations. 6.3.3.1 Particle motion in gases

Practical development	Circus (real or virtual) of everyday devices in use eg kettle, hairdryer, vacuum cleaner	Required practical 14: an investiga materials. The investigation will in the increase in temperature and s	ation to determine the specific heat c volve linking the decrease of one ene ubsequent increase in thermal energ	apacity of one or more ergy store (or work done) to y stored.
2. Energy transfers and efficiency	Energy cannot be created or destroyed. In any energy transfer, some energy is stored in less useful ways and is described as 'wasted' energy. Unwanted energy transfers can be reduced. The rate of cooling of a building is affected by the thickness and thermal conductivity of its walls. The higher the thermal conductivity of a material, the higher the rate of energy transfer by conduction across the material.	6.1.2.1 Energy transfers in a system: more detail.	6.1.2.2 Efficiency Equation and calculations	6.3.1.1 Density of materials Required practical 17: use appropriate apparatus to make and record the measurements needed to determine the densities of regular and irregular solid object and liquids.
Practical development	Leslie's cube to demonstrate difference in surface cooling. Compare cooling of drinks with lid on/off.			

	Investigate factors that affect the rate of cooling of a container of water eg surface area, initial temperature, types of insulation, colour of the container.		
	materials eg which is		
	better for a saucepan		
	Define the l' and the sil		
3. Energy resources	Define fuel and fossil	6.1.3 National and global energy	
	Tuel.	resources:	
	F	additional detail.	
	Energy resources are		
	renewable or non-		
	renewable.		
Practical development	Demonstrate electricity generation by building models of windmill (using hairdryer) or water mill to turn a turbine and generate a voltage.		
	Investigate the relationship between the distance from a light source and a solar (photoelectric) cells on the voltage generated.		

4. Types of forces	Forces are either a push or pull acting on an object due to an interaction with another force. Forces are either: contact forces or non- contact forces	6.5.1.2 Contact and non-contact forces: reference to vectors.	6.5.1.1 Scalar and vector quantities6.5.1.3 Gravity: equations and calculations	6.5.1.4 Resultant forces: free body diagrams
Practical development	Use newton meters to experience a range of pushes/pulls for lab/everyday objects Attraction/repulsion of magnets; attraction of magnetic materials eg paperclips/iron filings			
5. Effects of forces	Work is done when a force causes an object to move through a distance. (No calculations needed) When work is done against frictional forces acting on an object, there is a rise in temperature.	6.5.2 Work done and energy transfer: additional detail; equations and calculations.	6.5.3 Forces and elasticity: equations and calculations	
Practical development	Investigate how different surface affect the amount of friction on a moving block.	Required practical 18: Investigate	the relationship between force and e	extension for a spring.

6. Speed	Speed is measured by the distance travelled in a certain time. The units for speed as metres per second, kilometres per hour and miles per hour.	6.5.4.1.2 Speed: additional detail	6.5.4.1.1Distance and displacement: scalar and vector quantities.6.5.4.1.3 Velocity: distinguish between scalar and vector quantities.	6.5.4.1.5 Acceleration: Equations and calculations
	Calculate average speed using the equation: speed = distance/time		6.5.4.1.4 The distance-time relationship: graphical representations	
	Investigate how the speed of a trolley (or model car) changes as it rolls down a slope.			
7. Stopping distances	 The stopping distance of a vehicle is the sum of the distance the vehicle travels during the driver's reaction time (thinking distance) and the distance it travels under the braking force (braking distance). For a given braking force, the greater the speed of the vehicle, the greater the stopping distance. 	6.5.4.3.1 Stopping distances		 6.5.4.2.1 Newton's First Law 6.5.4.2.2 Newton's Second Law Required practical 19: Investigate the effect of varying the force on the acceleration of an object of constant mass and the effect of varying the mass of an object on the acceleration produced by a

				constant force.
				6.5.4.2.3 Newton's Third Law
8. Reaction times and stopping distances	A typical reaction time for a person ranges from 0.5s to 0.9s. A driver's reaction time can be affected by tiredness, drugs and alcohol and distractions.	6.5.4.3.2 Reaction time: evaluation of data.	6.5.4.3.4Factors affecting braking distance2: force and kinetic energy	
Practical development	Investigate factors that affect human reaction time eg tiredness, distraction, practice.			
9. Weather conditions and braking distances	The braking distance of a vehicle can be affected by adverse road and weather conditions and poor condition of the vehicle.	6.5.4.3.3 Factors affecting braking distance 1: estimating distances		
10. Radioactivity	Some atomic nuclei are unstable and produce ionising radiation. Nuclear radiation may be emitted as: • alpha particles • beta particles	6.4.1.1 The structure of an atom: additional detail of atomic structure.6.4.2.1 Radioactive decay and nuclear radiation: additional detail of the types of radiation.	6.4.1.2 Mass number, atomic number and isotopes.6.4.1.3 The development of the model of the atom (<i>cf</i> chemistry)	6.4.2.2 Nuclear equations6.4.2.3 Half-lives and the random nature of radioactive decay

gamma rays These have different penetration of materials and range in air. The uses and dangers.	6.4.2.4 Radioactive contamination: additional information.
associated with the	
three types of radiation.	

Physics: Component 6 - Electricity, magnetism and waves

ELC Outcomes	Summary of content covered in ELC	Same theme covered in Combined but extra content	New content on same topic	Rest of Combined Foundation content
1. Current in a circuit	Current is a flow of electrical charge which can be measured using an ammeter in series. Voltage is measured using a voltmeter in parallel across a component. The current in a component depends on the resistance in the circuit.	 6.2.1.2 Electrical charge and current: additional detail and equation. 6.2.1.3 Current, resistance and potential difference: additional detail and equation 	6.2.1.1 Standard circuit diagram symbols	 6.8 Key ideas: Models Cause and effect Action at a distance Proportionality Use of mathematical form 6.2.1.4 Resistors: ohmic conductors, diodes, thermistors 6.2.2 Series and parallel circuits: resistance
				calculations
Practical development	Build series circuits to measure current through a variety of components. Investigate which materials are the best electrical conductors.	Required practical 15: use circuit of the factors affecting the resistance constant temperature and combine Required practical 16: use circuit of characteristics of a variety of circuit constant temperature.	diagrams to set up and check approp of electrical circuits. This should incl ations of resistors in series and parall diagrams to construct appropriate circ it elements, including a filament lamp	riate circuits to investigate ude the length of a wire at el. cuits to investigate the I-V o, a diode and a resistor at
2. d.c. and a.c. current	Direct current is supplied by cells and batteries. Mains electricity is	6.2.3.1 Direct and alternating potential difference		

[
	alternating current.			
	UK mains electricity has a			
	frequency of 50Hz and is			
	230V.			
Practical development	Compare the pattern			
	shown on an oscilloscope			
	for d.c. and a.c. supply.			
3. Wiring a plug	The colour-coding for	6.2.3.2		
	three-core flex and the	Mains electricity:		
	appropriate terminal for	additional detail.		
	each wire in a plug.			
	The earth wire protects the			
	user; the fuse protects the			
	appliance.			
	Double-insulated			
	appliances do not need an			
	earth wire.			
Practical development	Wire a standard 3 pin plug		1	
	correctly			
	concony.			
	Investigate how fuse wire			
	molts when the identified			
	aurrent is exceeded			
4 Energy transfer in	Domostic electricity meters	6.2.4.1 Power:	6 2 4 2 The National Grid	
electrical appliances	bomestic electricity meters			
	measure the amount of			
	energy used.			
	The unit for power (VV).	6.2.4.2 Energy transfers in		
	Heating devices have the	everyday appliances:		
	highest power ratings.	Equations and calculations		
	The unit used in a			
	domestic electricity meter			
	to measure energy is the			

		1	
	kilowatt-hour (kWh).		
Practical development	Reading of meters to		
	produce meaningful and		
	valid observations.		
	Comparison of the energy		
	usage of small household		
	electrical appliances using		
	a joulomotor		
5 Magnets	The poles of a magnet are	6711 Dolog of a magnet	
o. Magneto	The poles of a magnet are	6.7.1.1 Foles of a magnet	
	where the magnetic forces		
	are strongest.	6.7.1.2 Magnetic fields:	
		additional detail.	
	Like poles repel and unlike		
	poles attract; these are		
	non-contact forces.		
	There is a pattern of		
	magnetic fields between		
	two magnets.		
Practical development	Identify the N and S poles		
	of bar magnets using a		
	suspended magnet to		
	show attraction and		
	repuision.		
	Use a compass to identify		
	the field pattern around a		
	single and then paired bar		
	magnets.		
	Construct a 'magnetic toy'		

	of floating magnets using		
	circular 'holed' magnets		
	and wooden base and rod.		
6. Electromagnets and	Current in a wire produces	6.7.2.1 Electromagnetism:	
solenoids	a magnetic field around the	additional detail	
	wire.		
	increasing the current		
	magnetic field		
	A simple electromagnet		
	can be made from a		
	solenoid and an iron core.		
	Electromagnets are used		
	in relays and scrapyards.		
Practical development	Use a plotting compass to		
	identify the magnetic field		
	round a current-carrying		
	wire.		
	Investigate how the		
	strength of an		
	electromagnet changes		
	ciouloniagnot onangos.		
	Investigate factors that		
	affect the strength of an		
	electromagnet.		

7 Lensitudia el end				
7. Longitudinal and	waves transfer energy not	6.6.1.1 Transverse and		
transverse waves	physical materials.	longitudinal waves		
	Waves may be transverse			
	or longitudinal.			
	Sound waves need a			
	medium (material) to travel			
	through.			
Practical development	Class 'Mexican wave'			
	demonstration.			
	Practical demonstrations:			
	Slinky (longitudinal)			
	Rope (transverse)			
	Bell in (evacuated) iar			
8 Wave properties	A transverse wave can be	6.6.1.2 Properties of waves:		
	described by its	equations and calculations:		
	wavelength and amplitude	measurement of speed of		
		medadrement of speed of		
	The wave equation: the	waves.		
	The wave equation, the			
	speed, frequency and			
	wavelength			
Practical development	Demonstrate wave shapes	Required practical 20: make observ	vations to identify the suitability of ap	paratus to measure the
	using oscilloscope.	frequency, wavelength and speed c	of waves in a ripple tank and waves	in a solid and take
		appropriate measurements.		
	Use oscilloscope,			
	frequency generator,			
	loudspeaker to relate			
	frequency to changes in			
	pitch and to relate			
	amplitude to changes in			
	volume.			

	1	1		1
9. The electromagnetic	The order of the spectrum	6.6.2.1 Types of electromagnetic	6.6.2.2 Properties of	
spectrum	(but not the values of	waves	electromagnetic waves 1: ray	
	wavelength or frequency).		diagrams.	
		6.6.2.3 Properties of		
	The risks associated with	electromagnetic waves 2:		
	ultraviolet waves, X-rays	additional detail.		
	and gamma rays.			
Practical development	Investigate the	Required practical 21: investigate	how the amount of infrared radiation	absorbed or radiated by a
	effectiveness of	surface depends on the nature of	that surface.	
	sunscreens in absorbing			
	u.v radiation using u-v			
	sensitive beads or			
	microscope slides and			
	sunscreens			
10. Uses of the	The seven components of	6.6.2.4 Uses and applications of		
electromagnetic	the e-m spectrum.	electromagnetic waves		
spectrum				
	The uses of			
	electromagnetic radiation.			
Practical development	Circus of exemplars of e-m			
	radiation eg radio;			
	microwave oven; infra-red			
	heater eg toaster; light			
	source and prism; UV light			
	and tonic water; UV-visible			
	pens; sample X-ray.			
	Investigate microwaves to			
	find which materials block			
	them (eg apple).			
	Investigate light travelling			

down an optical fibre over a distance.		
Investigate the shielding of a mobile phone or remote control device.		
Investigate the range over which a Bluetooth device is effective.		