

Level 2 Certificate FURTHER MATHEMATICS

Formulae Sheet

8365

Insert

[Turn over]

PERIMETER, AREA AND VOLUME

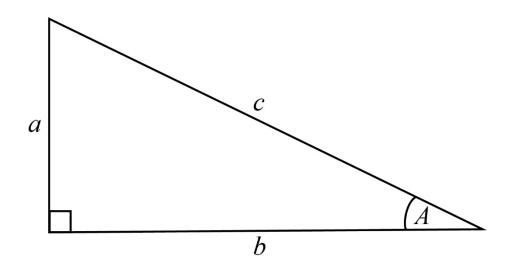
Where a and b are the lengths of the parallel sides and h is their perpendicular separation:

Area of a trapezium =
$$\frac{1}{2}(a+b)h$$

Volume of a prism = area of cross section × length

Where r is the radius and d is the diameter:

Circumference of a circle = $2\pi r = \pi d$


Area of a circle = πr^2

QUADRATIC FORMULA

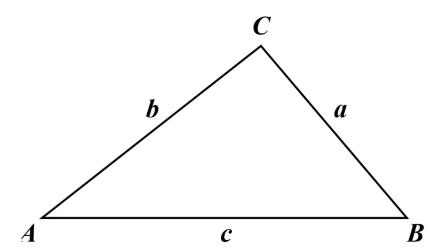
The solution of $ax^2 + bx + c = 0$ where $a \neq 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

PYTHAGORAS' THEOREM AND TRIGONOMETRY

In any right-angled triangle where a, b and c are the length of the sides and c is the hypotenuse:

$$a^2 + b^2 = c^2$$


In any right-angled triangle ABC where a, b and c are the length of the sides and c is the hypotenuse:

$$\sin A = \frac{a}{c}$$

$$\cos A = \frac{b}{c}$$

$$\tan A = \frac{a}{b}$$

[Turn over]

In any triangle ABC where a, b and c are the length of the sides:

sine rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

cosine rule: $a^2 = b^2 + c^2 - 2bc \cos A$

Area of triangle = $\frac{1}{2}ab \sin C$

For any angle $\theta = \tan \theta = \frac{\sin \theta}{\cos \theta}$

and $\sin^2\theta + \cos^2\theta = 1$

COORDINATE GEOMETRY

Equation of a straight line passing through (x_1, y_1) with gradient m

$$y - y_1 = m(x - x_1)$$

The general equation of a circle, centre (a, b), radius r $(x-a)^2 + (y-b)^2 = r^2$

BLANK PAGE

Copyright © 2022 AQA and its licensors. All rights reserved.

IB/M/SB/2022/8365/E1