Four students tested their reaction times using a computer program. When a green light appeared on the screen the students had to press a key. Table 1 shows their results.

Table 1

<table>
<thead>
<tr>
<th>Student</th>
<th>Reaction time in s</th>
<th>Mean reaction time in s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test 1</td>
<td>Test 2</td>
</tr>
<tr>
<td>Boy 1</td>
<td>0.28</td>
<td>0.27</td>
</tr>
<tr>
<td>Boy 2</td>
<td>0.28</td>
<td>0.47</td>
</tr>
<tr>
<td>Girl 1</td>
<td>0.31</td>
<td>0.29</td>
</tr>
<tr>
<td>Girl 2</td>
<td>0.32</td>
<td>0.30</td>
</tr>
</tbody>
</table>

What is meant by ‘reaction time’ in this experiment? [1 mark]

Boy 2 had an anomalous result in Test 2. Suggest a reason why. [1 mark]

Give one conclusion that can be made from the results in Table 1. [1 mark]
Reaction time is important at the start of a race.

Table 2 shows the time taken by a boy to run different distances.

<table>
<thead>
<tr>
<th>Distance in m</th>
<th>Time in s</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>12.74</td>
</tr>
<tr>
<td>200</td>
<td>25.63</td>
</tr>
<tr>
<td>800</td>
<td>139.46</td>
</tr>
</tbody>
</table>

Reaction time is more important in a 100 m race than in an 800 m race.

Explain why. [2 marks]
Two girls, A and B, ran an 800 m race.

Figure 1 shows how the distance changed with time.

Figure 1
01.6 Compare the motion of runners A and B.

Include data from Figure 11.

[6 marks]

01.7 Use Figure 1 to determine Girl B’s speed at 60 s.

Show how you use the graph to obtain your answer.

[3 marks]

Speed = ________________ m/s

Turn over for the next question
A baby monitor has a sensor unit that transmits an image of the baby and the noises the baby makes to a monitor unit. The monitor unit then displays an image of the baby and emits the noises the baby makes.

Compare the properties of the waves that transmit images and noises from the monitor unit. [4 marks]
2.2 The sensor unit can detect infrared and visible light.

Suggest one advantage of being able to detect infrared. [1 mark]

2.3 Write down the equation that links frequency, wave speed and wavelength. [1 mark]

Equation

2.4 The signals for the monitor unit are transmitted as electromagnetic waves with a wavelength of 0.125 m.

Wave speed of electromagnetic waves = 3×10^8 m/s

Calculate the frequency of the signal. [3 marks]

Frequency = __________________ Hz

Turn over for the next question
A swimmer dives off a boat.

Look at Figure 2.

Figure 2

What two factors determine the momentum of the swimmer? [2 marks]

1
2

What is the unit of momentum? [1 mark]

Tick one box.

- J/s
- kg m/s
- N m
- m/s²

SPECIMEN MATERIAL
03.3 The boat was stationary.

As the swimmer dives forwards, the boat moves backwards.

Use the idea of conservation of momentum to explain why the boat moves backwards.

[4 marks]

03.4 Explain what would happen to the motion of the boat if there were more people on the boat when the swimmer dived off.

[2 marks]

Question 3 continues on the next page
The swimmer's speed increases as she swims away from the boat.

The swimmer has a top speed.

Explain why. [5 marks]
A student changed the force applied to a spring by adding weights. Figure 3 shows a graph of her results.

Figure 3

![Graph showing force applied in N vs. extension in cm.]

04.1 Write down the equation that links the force applied and extension for a spring. [1 mark]

04.2 Identify the pattern shown in Figure 3. Explain your answer. [2 marks]

04.3 Give one way the student could improve her investigation. [1 mark]
04.4 Describe the relationship between work done and elastic potential energy in stretching a spring. [2 marks]

04.5 Draw a line on Figure 3 to show the results for a stiffer spring. Explain the reason for the line you have drawn. [3 marks]

04.6 Explain what would happen to the spring if the student kept adding weights? [2 marks]
Figure 4 shows a skydiver training in an indoor wind tunnel.

Large fans below the skydiver blow air upwards.

The skydiver is in a stationary position.

Complete the free body diagram for the skydiver.

[2 marks]

Force from the air

Question 5 continues on the next page
05.2 The skydiver now straightens his legs to increase his surface area.

This causes the skydiver to accelerate upwards.

Explain why straightening his legs cause the skydiver to accelerate upwards. [2 marks]

05.3 A small aeroplane used for skydiving moves along a runway.

The aeroplane accelerates at 2 m/s² from a velocity of 8 m/s.

After a distance of 209 m it reaches its take-off velocity.

Calculate the take-off velocity of the aeroplane. [3 marks]

Take-off velocity = m/s

05.4 A skydiver jumps from an aeroplane.

There is a resultant vertical force of 300 N on the skydiver.

There is a horizontal force from the wind of 60 N.

Draw a vector diagram on Figure 5 to determine the magnitude and direction of the resultant force on the skydiver. [4 marks]
Magnitude of resultant force = ________________________ N

Turn over for the next question
A teacher used the equipment shown in Figure 6 to demonstrate the motor effect.

Figure 6

Copper rod
Horseshoe magnet

Describe how Fleming’s left-hand rule can be used to determine the direction in which the rod will move when the switch is closed, and state the direction. [4 marks]
Increasing the current can increase the force acting on the copper rod. Give one other way in which the size of the force acting on the copper rod could be increased. [1 mark]

The copper rod in Figure 6 has a length of 7 cm and a mass of \(4 \times 10^{-4}\) kg. When there is a current of 1.12 A the resultant force on the copper rod is 0 N. Calculate the magnetic flux density.

Gravitational field strength = 9.8 N/kg

Magnetic flux density = \(\) T

END OF QUESTIONS
There are no questions printed on this page

Copyright information

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements in future papers if notified. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2016 AQA and its licensors. All rights reserved.