

Physics Equations Sheet

GCSE Combined Science: Trilogy (8464) and GCSE Combined Science: Synergy (8465)

FOR USE IN JUNE 2023 ONLY

[Turn over]

N'

HT = Higher Tier only equations

kinetic energy = 0.5 × mass × (speed) ²	$E_k = \frac{1}{2} m v^2$
elastic potential energy = 0.5 × spring constant × (extension) ²	$E_e = \frac{1}{2} k e^2$
gravitational potential energy = mass × gravitational field strength × height	$E_p = m g h$
change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = m c \Delta \theta$
power = $\frac{\text{energy transferred}}{\text{time}}$	$P = \frac{E}{t}$
$power = \frac{work done}{time}$	$P = \frac{W}{t}$
efficiency = useful output energy transfer total input energy transfer	
efficiency = useful power output total power input	

harge flow = current × time	Q = I t
	V = IR
otential difference – current ~ resistance	V-IK
ower = potential difference × current	P = VI
ower = (current) ² × resistance	$P = I^2 R$
nergy transferred = power × time	E = P t
nergy transferred = charge flow × potential difference	E = Q V
otential difference across primary coil × current in primary oil =	1/ 1 - 1/ 1
otential difference across secondary coil × current in econdary coil	$V_p I_p = V_S I_S$
ensity = mass	$\rho = \frac{m}{V}$
-	ower = (current) ² × resistance nergy transferred = power × time nergy transferred = charge flow × potential difference otential difference across primary coil × current in primary oil = otential difference across secondary coil × current in econdary coil mass

[Turn over]

thermal energy for a change of state = mass × specific latent heat	E = m L
weight = mass × gravitational field strength	W = m g
work done = force × distance (along the line of action of the force)	W = F s
force = spring constant × extension	F = k e
distance travelled = speed × time	s = v t
acceleration = change in velocity time taken	$a = \frac{\Delta v}{t}$
(final velocity) ² – (initial velocity) ² = $2 \times acceleration \times distance$	$v^2 - u^2 = 2 a s$
resultant force = mass × acceleration	F = m a

нт	momentum = mass × velocity	p = m v
	$period = \frac{1}{frequency}$	$T = \frac{1}{f}$
	wave speed = frequency × wavelength	$v = f \lambda$
нт	force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length	F = B I l

C

BLANK PAGE

Physics Equations Sheet - GCSE Combined Science: Trilogy (8464) and GCSE Combined Science: Synergy (8465)

FOR USE IN JUNE 2023 ONLY

WP/M/CD/Jun23/8464/8465/INS/E1