

## **Physics Equations Sheet**

GCSE Combined Science: Trilogy (8464) and GCSE Combined Science: Synergy (8465)

FOR USE IN JUNE 2023 ONLY

[Turn over]

## **HT = Higher Tier only equations**

| kinetic energy = 0.5 × mass × (speed) <sup>2</sup>                            | $E_k = \frac{1}{2} m v^2$      |
|-------------------------------------------------------------------------------|--------------------------------|
| elastic potential energy = 0.5 × spring constant × (extension) <sup>2</sup>   | $E_e = \frac{1}{2} k e^2$      |
| gravitational potential energy = mass × gravitational field strength × height | $E_p = m g h$                  |
| change in thermal energy = mass × specific heat capacity × temperature change | $\Delta E = m c \Delta \theta$ |
| power = energy transferred time                                               | $P = \frac{E}{t}$              |

| power =                   | rk done<br>time             | $P = \frac{W}{t}$ |
|---------------------------|-----------------------------|-------------------|
| efficiency =              |                             |                   |
| useful outpu              | t energy transfer           |                   |
| total input               | energy transfer             |                   |
| - ff: - : - : - : - : -   | useful power output         |                   |
| efficiency =              | total power input           |                   |
| charge flow :             | = current × time            | Q = I t           |
| potential diff resistance | erence = current ×          | V = IR            |
| power = pote              | ential difference × current | P = VI            |

[Turn over]

6

| HT | power = (current) <sup>2</sup> × resistance                                                                                                    | $P = I^2 R$            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|    | energy transferred = power × time                                                                                                              | E = P t                |
|    | energy transferred = charge flow × potential difference                                                                                        | E = Q V                |
|    | potential difference across primary coil  × current in primary coil =  potential difference across secondary  coil × current in secondary coil | $V_p I_p = V_s I_s$    |
|    | density = $\frac{\text{mass}}{\text{volume}}$                                                                                                  | $ \rho = \frac{m}{V} $ |
|    | thermal energy for a change of state = mass × specific latent heat                                                                             | E = m L                |
|    | weight = mass × gravitational field strength                                                                                                   | W = m g                |

| work done = force × distance (along the line of action of the force)                                      | W = F s                  |
|-----------------------------------------------------------------------------------------------------------|--------------------------|
| force = spring constant × extension                                                                       | F = k e                  |
| distance travelled = speed × time                                                                         | s = v t                  |
| acceleration = change in velocity<br>time taken                                                           | $a = \frac{\Delta v}{t}$ |
| (final velocity) <sup>2</sup> – (initial velocity) <sup>2</sup> = $2 \times acceleration \times distance$ | $v^2 - u^2 = 2 a s$      |
| resultant force = mass × acceleration                                                                     | F = m a                  |
| momentum = mass × velocity                                                                                | p = m v                  |

[Turn over]

HT

C

| period = \frac{1}{frequency}                                                                                             | $T = \frac{1}{f}$ |
|--------------------------------------------------------------------------------------------------------------------------|-------------------|
| wave speed = frequency × wavelength                                                                                      | $v = f \lambda$   |
| force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length | F = B I l         |

Physics Equations Sheet - GCSE Combined Science: Trilogy (8464) and GCSE Combined Science: Synergy (8465)

FOR USE IN JUNE 2023 ONLY

WP/M/CH/Jun23/8464/8465/INS/E1

O