Materials
For this paper you must have:
• a ruler
• a calculator
• the periodic table (enclosed)
• the Physics equation sheet (enclosed).

Instructions
• Answer all questions in the spaces provided.
• Do all rough work in this book. Cross through any work you do not want to be marked.

Information
• There are 100 marks available on this paper.
• The marks for questions are shown in brackets.
• You are expected to use a calculator where appropriate.
• You are reminded of the need for good English and clear presentation in your answers.
• When answering questions 04.3, 10.2 and 10.5 you need to make sure that your answer:
 ‒ is clear, logical, sensibly structured
 ‒ fully meets the requirements of the question
 ‒ shows that each separate point or step supports the overall answer.

Advice
• In all calculations, show clearly how you work out your answer.
This question is about forces.

Force is a vector quantity.

Which is a correct statement about a vector quantity? [1 mark]

Tick one box.

- Has direction only
- Has direction and magnitude
- Has magnitude only
- Has neither magnitude nor direction

A newtonmeter measures the weight of an object.

Look at Figure 1.

Figure 1

What is the weight of the object in Figure 1? [1 mark]

Weight = ___________ N
01.3 An object has a weight of 6.4 N.

Calculate the mass of the object.

Use the equation

\[\text{mass} = \frac{\text{weight}}{\text{gravitational field strength (}g\text{)}} \]

gravitational field strength = 9.8 N/kg

[1 mark]

\[
\text{Mass} = \underline{0.65} \text{ kg}
\]

01.4 The mass of a bag of sugar is 1 kg.

• On Earth the weight of this bag of sugar is 10 N.
• On Mars the weight of this bag of sugar is 4 N.

Suggest why the weight of the bag of sugar is different on Earth and on Mars.

[1 mark]

Turn over for the next question
The elements in the periodic table are arranged in groups.

What is similar about the elements in the same group? [1 mark]

Tick one box.

- Chemical properties
- Atomic numbers
- Relative atomic masses

Figure 2 shows the arrangement of electrons in an atom.

What group of the periodic table is this atom in? [1 mark]

Group ___________________
Why are the elements in Group 0 unreactive? [1 mark]

Tick one box.

- They are all gases at room temperature
- They all have the same atomic number
- They are all in the same group of the periodic table
- They all have a stable arrangement of electrons

Question 2 continues on the next page
A teacher demonstrates the reaction of some alkali metals with water. Look at Figure 3.

Figure 3

The students write what they see.

1. The alkali metals float on water.
2. The alkali metals fizz when they react with water.
3. The universal indicator changes from green to purple.
4. The sodium disappears faster than the lithium.
Give a reason for each of the four things that the students see. [4 marks]

1. The alkali metals float on water.
 Reason

2. The alkali metals fizz when they react with water.
 Reason

3. The universal indicator changes from green to purple.
 Reason

4. The sodium disappears faster than the lithium.
 Reason

Turn over for the next question
This question is about the reactions of acids.

When dilute hydrochloric acid is reacted with sodium hydroxide solution there is a temperature change.

Explain how the temperature changes. [2 marks]

Acids produce hydrogen ions in aqueous solutions.

What is the ionic equation for neutralisation reactions? [1 mark]

Tick one box.

- $\text{H}^+(\text{aq}) + \text{H}_2\text{O}(\text{l}) \rightarrow \text{H}_3\text{O}^+(\text{aq})$
- $\text{H}^+(\text{aq}) + \text{OH}^-(\text{aq}) \rightarrow \text{H}_2\text{O}(\text{l})$
- $2\ \text{H}_2\text{O}(\text{l}) \rightarrow \text{H}_3\text{O}^+(\text{aq}) + \text{OH}^-(\text{aq})$
- $\text{H}_2\text{O}(\text{l}) \rightarrow 2\ \text{H}^+(\text{aq}) + \text{O}^{2-}(\text{aq})$
Sulfuric acid reacts with copper carbonate to produce a salt, water and carbon dioxide.

\[\text{H}_2\text{SO}_4 + \text{CuCO}_3 \rightarrow \text{CuSO}_4 + \text{H}_2\text{O} + \text{CO}_2 \]

What is the name of the salt produced? [1 mark]

A student reacted four metals with water and with a dilute acid to work out the order of reactivity of the metals.

Table 1 shows some of the observations.

<table>
<thead>
<tr>
<th>Metal</th>
<th>Reaction with water</th>
<th>Reaction with dilute acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>Bubbles of gas</td>
<td>X</td>
</tr>
<tr>
<td>Copper</td>
<td>Y</td>
<td>No bubbles of gas</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Few bubbles of gas</td>
<td>Bubbles of gas</td>
</tr>
<tr>
<td>Zinc</td>
<td>No bubbles of gas</td>
<td>Bubbles of gas</td>
</tr>
</tbody>
</table>

Write the observations for X and Y. [2 marks]

Observation at X
Observation at Y

Write the four metals, calcium, copper, magnesium and zinc, in order of reactivity. [2 marks]

Start with the most reactive metal.
Some gases given off in reactions can be identified by chemical tests.

Chemical test

- Put in a lighted splint. The gas burns with a pop sound.
 - **Gas**: Carbon dioxide

- Put in a glowing splint. The gas relights the splint.
 - **Gas**: Hydrogen

- Put into limewater. The gas turns limewater cloudy.
 - **Gas**: Oxygen

Acids react with bases to produce salts and water (H₂O).

- The electronic structure of a hydrogen atom is 2,1

- The electronic structure of an oxygen atom is 2,6

Draw a diagram to show the arrangement of the outer shell electrons in a molecule of water.

The area around a magnet is called the magnetic field.

The Earth has a magnetic field.

What causes the Earth’s magnetic field? [1 mark]

Tick one box.

- The movement of liquid iron in the Earth’s outer core
- The gravitational field of the Earth
- The permanent magnet in the Earth’s core

Look at Figure 4.

Figure 4

Opposite poles brought together

S N S

Same poles brought together

N S N

What will happen in each case when the poles of two magnets are brought close together? [2 marks]

Opposite poles brought together

Same poles brought together
Figure 5 shows an electromagnet being used to lift a car in a scrapyard.

An electromagnet is a solenoid.

Explain why it is better to use an electromagnet rather than a permanent magnet in a scrapyard.

You should include a comparison of the properties of electromagnets and permanent magnets in your answer.

[4 marks]
Turn over for the next question
There are several different forms of carbon and many different carbon compounds.

Figure 6 shows a 3D model of a molecule of methane (CH₄).

Figure 6

Draw the 2D structure of a methane molecule. [1 mark]
Different forms of carbon have different bonding and structure.

Draw **one** line from the form of carbon to the bonding and structure. [3 marks]

<table>
<thead>
<tr>
<th>Form of carbon</th>
<th>Bonding and structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Diagram of a hexagonal structure]</td>
<td>Each carbon atom is bonded to three other carbon atoms in a single layer</td>
</tr>
<tr>
<td>[Diagram of a linear structure]</td>
<td>Each carbon atom is bonded to four other carbon atoms</td>
</tr>
<tr>
<td>[Diagram of layers]</td>
<td>Layers of carbon atoms with no covalent bonds between the layers</td>
</tr>
<tr>
<td>[Diagram of double bonds]</td>
<td>Carbon ions held together by strong electrostatic forces</td>
</tr>
<tr>
<td>[Diagram of single bonds]</td>
<td>Pairs of carbon atoms with no covalent bonds between the molecules</td>
</tr>
</tbody>
</table>

Question 5 continues on the next page
Crude oil is a mixture of many different carbon compounds.

Crude oil can be separated into useful fractions by fractional distillation.

Figure 7 shows a column used to separate crude oil.

Figure 7

Crude oil is heated so that most of the compounds **evaporate**.

At different temperatures the compounds cool and **condense**.
Which fraction is the most viscous? [1 mark]
Tick one box.
- Engine oil
- Diesel oil
- Kerosene
- Petrol

Which fraction is the most flammable? [1 mark]
Tick one box.
- Diesel oil
- Kerosene
- Petrol
- Refinery gas

Why does kerosene separate out of the mixture before diesel oil? [1 mark]
An electric current is a flow of electrical charge through a circuit.

Complete the sentence.
Use a word from the box.

Metals are good conductors of electricity because electrical charge is transferred by delocalised ___________________ .

Draw one line from each symbol to the name of the component.
Table 2 shows information about some electrical appliances.

<table>
<thead>
<tr>
<th>Electrical appliance</th>
<th>Power in watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hairdryer</td>
<td>1500</td>
</tr>
<tr>
<td>Kettle</td>
<td>2500</td>
</tr>
<tr>
<td>Electric hob</td>
<td>3000</td>
</tr>
<tr>
<td>Television</td>
<td>360</td>
</tr>
</tbody>
</table>
A student plugs all four of the appliances into one multi-way socket.

The mains electricity is 230 V.

The highest safe current in the socket is 30 A.

Explain why it is not safe to use all four appliances at the same time.

In your answer you should:

- calculate the total power needed
- use the equation

\[
\text{current} = \frac{\text{power}}{\text{potential difference}}
\]

...to calculate the total current needed.

[4 marks]
Figure 8 shows how electrical power is transferred from power stations to consumers using the National Grid.

Figure 8

Transformer 1 is a step-up transformer.

Explain why step-up transformers are used in the National Grid. [3 marks]

What is the purpose of Transformer 2? [1 mark]
In a power station 900 MJ of thermal energy were released by burning natural gas.

Write down the equation that links efficiency, useful input energy transfer and useful output energy transfer.

\[
\text{Efficiency} = \frac{\text{Useful output energy transfer}}{\text{Useful input energy transfer}}
\]

[1 mark]

In a power station 900 MJ of thermal energy were released by burning natural gas.

Only 405 MJ was generated.

Calculate the efficiency of this energy transfer.

\[
\text{Efficiency} = \frac{405 \text{ MJ}}{900 \text{ MJ}}
\]

[2 marks]
There are no questions printed on this page
This question is about the electrolysis of two compounds.

Figure 9 shows the electrolysis of molten lead bromide.

The electrolyte contains lead ions (Pb^{2+}) and bromide ions (Br^-).

Complete the sentences.

Use words from the box.

At the positive electrode the gas produced is ____________________.

At the negative electrode lead ____________________ gain electrons and turn into lead ____________________.
A student measured the volumes of each gas produced during the electrolysis of water.

Table 3 shows the student’s results.

Table 3

<table>
<thead>
<tr>
<th>Time in minutes</th>
<th>Volume of gas produced in cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hydrogen</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>11.2</td>
</tr>
<tr>
<td>4</td>
<td>20.1</td>
</tr>
<tr>
<td>6</td>
<td>32.5</td>
</tr>
<tr>
<td>8</td>
<td>40.0</td>
</tr>
<tr>
<td>10</td>
<td>60.9</td>
</tr>
</tbody>
</table>

The student plotted a graph of the results for oxygen. **Figure 10** shows the graph.

The student did not put a scale on the y axis.

On the graph in **Figure 10**:

- complete the scale for the y axis
- plot the results for hydrogen
- include a line of best fit.

[3 marks]
07.3 Use the graph to calculate the mean volume of oxygen produced per second.

[3 marks]

Mean volume of oxygen produced = _______ cm³/s
Formulae and equations are used to describe chemical reactions.

Aluminium reacts with sulfuric acid (H\textsubscript{2}SO\textsubscript{4}) to produce aluminium sulfate, Al\textsubscript{2}(SO\textsubscript{4})\textsubscript{3} and hydrogen (H\textsubscript{2}).

Complete and balance the equation for this reaction.

\[
\text{Al} + \quad \text{H}_2\text{SO}_4 \rightarrow \quad \text{Al}_2(\text{SO}_4)_3 + \quad \text{H}_2
\]

Calcium carbonate reacts with nitric acid to produce calcium nitrate.

Calculate the relative formula mass (\(M_r\)) of calcium nitrate, Ca(NO\textsubscript{3})\textsubscript{2}

Relative atomic masses (\(A_r\)): N = 14; O = 16; Ca = 40

\[\text{Relative formula mass (}\ M_r\text{\) = } \quad \text{_____________________________}\]
Zinc carbonate decomposes when heated.

A student heated 25 g zinc carbonate (ZnCO$_3$).

Figure 11 shows how he set up the apparatus.

Figure 11

The balanced chemical equation for the decomposition reaction is:

$$\text{ZnCO}_3 (s) \rightarrow \text{ZnO} (s) + \text{CO}_2 (g)$$

The student measured the mass of solid product after heating until there was no further change in mass.

The student did the experiment four times. **Table 4** shows the results.

Table 4

<table>
<thead>
<tr>
<th>Experiment</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass of solid product in g</td>
<td>17.4</td>
<td>19.7</td>
<td>17.6</td>
<td>16.9</td>
</tr>
</tbody>
</table>

Calculate the mean mass of the solid product.

Do not use any anomalous results in your calculation.

[2 marks]

$$\text{Mean mass} = \underline{\underline{0.83}} \ g$$
The rate of chemical reactions can be changed by changing the conditions.

Methane burns in oxygen to produce carbon dioxide and water.

The activation energy for the reaction is 2648 kJ/mol.

The reaction gives out 818 kJ/mol of energy.

Figure 12 shows the reaction profile for this reaction.

Complete the reaction profile.

Draw arrows to represent:

- the activation energy
- the energy given out.

[4 marks]
What percentage of the activation energy is the energy given out?

[1 mark]

Calcium carbonate decomposes when it is heated:

The decomposition of calcium carbonate is an endothermic reaction.

How would the reaction profile for decomposition of calcium carbonate be different from the reaction profile of methane burning in oxygen?

[1 mark]

Catalysts are used in chemical reactions in industry.

Give two properties of catalysts.

For each property, explain why it makes the catalyst useful in industry.

[4 marks]
Enzymes are biological catalysts.

What type of molecule is an enzyme? [1 mark]

Tick one box.

- Carbohydrate
- Hydrocarbon
- Lipid
- Protein

If enzymes are denatured they stop working. [2 marks]

Give two ways an enzyme can be denatured.

1
2

An enzyme called lactase catalyses the reaction that breaks down lactose to smaller molecules.

One model used to explain how enzymes affect reactions is called the lock and key model.

Use the lock and key model to explain why lactase cannot be used to speed up all chemical reactions. [3 marks]
This question is about speed.

What is a typical value for the speed of sound?

Tick one box.

3.3 m/s
3.3 × 10^2 m/s
3.3 × 10^3 m/s
3.3 × 10^6 m/s

[1 mark]
Figure 13 shows a distance–time graph of a car.

![Figure 13](image)

Explain what Figure 13 shows about the motion of the car between point A and point E.

You should use values from Figure 13 in your answer.

[4 marks]
The kinetic energy of a moving car depends on the car’s mass and speed.

Write down the equation that links kinetic energy, mass and speed. [1 mark]

A car has a mass of 1,650 kg.

Table 5 shows the kinetic energy of the car moving at 11 m/s.

<table>
<thead>
<tr>
<th>Mass of car in kg</th>
<th>Speed in m/s</th>
<th>Kinetic energy in J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,650</td>
<td>11</td>
<td>99,825</td>
</tr>
<tr>
<td>1,650</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Calculate the missing value in Table 5.

Give your answer in kilojoules (kJ). [2 marks]

Kinetic energy = __________________________ kJ

Question 10 continues on the next page
A man is driving his car at a constant speed on a wet road.

He sees a fallen tree on the wet road and tries to stop quickly to prevent an accident.

Figure 14

Explain why the man may not be able to stop in time.

[6 marks]