

GCSE Science

Hub schools network - summer update

Booklet 1 – examples and accompanying documents

Published: summer 2019

AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in England and Wales (number 3644723). Our registered address is AQA, Devas Street, Manchester M15 6EX.

Contents

Contents	Page
AO3: Regulatory requirements	4
Working scientifically in GCSE sciences	5
Examples for discussion activity (examples 1-9)	11
Further example AO3 questions at different levels of demand	
Interpret and evaluate: examples 10-19	24
Make judgements and draw conclusions: examples 20-25	40
Develop and improve experimental procedures: examples 26-34	50
Making the best use of ERA	67
Resource and guidance materials	73

A03: Regulatory requirements

interpret amake judg	formation and ideas to: ind evaluate jements and draw conclus ind improve experimental p		20%
Strands	Elements	Coverage	Interpretations and definitions
1 – Analyse information and ideas to interpret and evaluate.	 1a - Analyse information and ideas to interpret. 1b - Analyse information and ideas to evaluate. 	 Full coverage in each set of assessments (but not in every assessment). A reasonable 	 Develop and improve covers a range of approaches to assessment, including questions related to adapting, modifying and enhancing experimental procedures. Learners should not be expected to develop their own procedures. Experimental procedures encompasses, but is
2 – Analyse information and ideas to make judgements and draw conclusions.	 2a - Analyse information and ideas to make judgements. 2b - Analyse information and ideas to draw conclusions. 	balance between the strands within this assessment objective, and between the elements within	 broader than, the core practical activities. In the context of this assessment objective, questions/tasks should take an analytical form such as suggesting the limitations of a particular method. The emphasis here is on the outcome that Learners produce through the analysis of information – for
3 – Analyse information and ideas to develop and improve experimental procedures.	 3a – Analyse information and ideas to develop experimental procedures. 3b – Analyse information and ideas to improve experimental procedures. 	each strand.	 instance, the interpreting, evaluating, judgement, conclusion or modification/improvement of procedures that stems from their reasoning and synthesis of skills. The abilities to interpret and evaluate in this context are both linked and complementary. Questions/tasks should address a range of sources here – for example, written, numerical, theoretical, practical, ethical, social, economic and environmental.

2 Working scientifically

Science is a set of ideas about the material world. We have included all the parts of what good science is at GCSE level: whether it be investigating, observing, experimenting or testing out ideas and thinking about them. The way scientific ideas flow through the specification will support you in building a deep understanding of science with your students. We know this will involve talking about, reading and writing about science plus the actual doing, as well as representing science in its many forms both mathematically and visually through models.

This specification encourages the development of knowledge and understanding in science through opportunities for working scientifically. Working scientifically is the sum of all the activities that scientists do. We feel it is so important that we have woven it throughout our specification and written papers.

Our schemes of work will take this further for you and signpost a range of ways to navigate through this qualification so your students are engaged and enthused. These free resources support the use of mathematics as a tool for thinking through the use of mathematical language in explanations, applications and evaluations.

The tables below show examples of the ways working scientifically could be assessed.

1 Development of scientific thinking

Students should be able to:	Examples of what students could be asked to do in an exam
WS 1.1 Understand how scientific methods and	Give examples to show how scientific methods and theories have changed over time.
theories develop over time.	Explain, with an example, why new data from experiments or observations led to changes in models or theories.
	Decide whether or not given data supports a particular theory.
WS 1.2	Recognise/draw/interpret diagrams.
Use a variety of models such as representational, spatial, descriptive,	Translate from data to a representation with a model.
computational and mathematical to solve problems, make predictions and to develop scientific explanations and understanding of familiar and unfamiliar facts.	Use models in explanations, or match features of a model to the data from experiments or observations that the model describes or explains.
	Make predictions or calculate quantities based on the model or show its limitations.
	Give examples of ways in which a model can be tested by observation or experiment.
WS 1.3 Appreciate the power and limitations of	Explain why data is needed to answer scientific questions, and why it may be uncertain, incomplete or not available.
science and consider any ethical issues which may arise.	Outline a simple ethical argument about the rights and wrongs of a new technology.
WS 1.4	Describe and explain specified examples of the
Explain everyday and technological applications of science; evaluate associated personal, social, economic and environmental implications; and	technological applications of science. Describe and evaluate, with the help of data, methods that can be used to tackle problems caused by human impacts on the environment.
make decisions based on the evaluation of evidence and arguments.	
WS 1.5 Evaluate risks both in practical science and the wider societal context, including	Give examples to show that there are hazards associated with science-based technologies which have to be considered alongside the benefits.
perception of risk in relation to data and consequences.	Suggest reasons why the perception of risk is often very different from the measured risk (eg voluntary vs imposed risks, familiar vs unfamiliar risks, visible vs invisible hazards).
WS 1.6 Recognise the importance of peer review of results and of communicating results	Explain that the process of peer review helps to detect false claims and to establish a consensus about which claims should be regarded as valid.
to a range of audiences.	Explain that reports of scientific developments in the popular media are not subject to peer review and may be oversimplified, inaccurate or biased.

2 Experimental skills and strategies

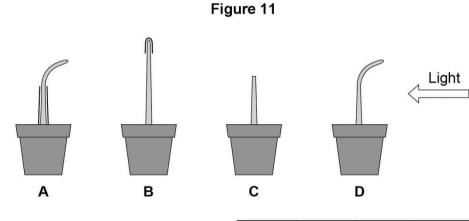
Students should be able to:	Examples of what students could be asked to do in an exam
WS 2.1 Use scientific theories and explanations to develop hypotheses.	Suggest a hypothesis to explain given observations or data.
WS 2.2 Plan experiments or devise procedures to make observations, produce or characterise a substance, test hypotheses, check data or explore phenomena.	 Describe a practical procedure for a specified purpose. Explain why a given practical procedure is well designed for its specified purpose. Explain the need to manipulate and control variables. Identify in a given context: the independent variable as the one that is changed or selected by the investigator the dependent variable that is measured for each change in the independent variable control variables and be able to explain why they are kept the same. Apply understanding of apparatus and techniques to suggest a procedure for a specified purpose.
WS 2.3 Apply a knowledge of a range of techniques, instruments, apparatus, and materials to select those appropriate to the experiment.	Describe/suggest/select the technique, instrument, apparatus or material that should be used for a particular purpose, and explain why.
WS 2.4 Carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerations.	Identify the main hazards in specified practical contexts. Suggest methods of reducing the risk of harm in practical contexts.
WS 2.5 Recognise when to apply a knowledge of sampling techniques to ensure any samples collected are representative.	Suggest and describe an appropriate sampling technique in a given context.
WS 2.6 Make and record observations and measurements using a range of apparatus and methods.	Read measurements off a scale in a practical context and record appropriately.
WS 2.7 Evaluate methods and suggest possible improvements and further investigations.	Assess whether sufficient, precise measurements have been taken in an experiment. Evaluate methods with a view to determining whether or not they are valid.

3 Analysis and evaluation

Apply the cycle of collecting, presenting and analysing data, including:

Students should be able to:	Examples of what students could be asked to do in an exam
WS 3.1 Presenting observations and other data	Construct and interpret frequency tables and diagrams, bar charts and histograms.
using appropriate methods.	Plot two variables from experimental or other data.
WS 3.2 Translating data from one form to another.	Translate data between graphical and numeric form.
WS 3.3 Carrying out and represent mathematical and statistical analysis.	 For example: use an appropriate number of significant figures find the arithmetic mean and range of a set of data construct and interpret frequency tables and diagrams, bar charts and histograms make order of magnitude calculations change the subject of an equation substitute numerical values into algebraic equations using appropriate units for physical quantities determine the slope and intercept of a linear graph draw and use the slope of a tangent to a curve as a measure of rate of change understand the physical significance of area between a curve and the x-axis and measure it by counting squares as appropriate.
WS 3.4 Representing distributions of results and make estimations of uncertainty.	Apply the idea that whenever a measurement is made, there is always some uncertainty about the result obtained. Use the range of a set of measurements about the mean as a measure of uncertainty.
WS 3.5 Interpreting observations and other data (presented in verbal, diagrammatic, graphical, symbolic or numerical form), including identifying patterns and trends, making inferences and drawing conclusions.	Use data to make predictions. Recognise or describe patterns and trends in data presented in a variety of tabular, graphical and other forms. Draw conclusions from given observations.
WS 3.6 Presenting reasoned explanations including relating data to hypotheses.	Comment on the extent to which data is consistent with a given hypothesis. Identify which of two or more hypotheses provides a better explanation of data in a given context.

Students should be able to:	Examples of what students could be asked to do in an exam
WS 3.7 Being objective, evaluating data in terms of accuracy, precision, repeatability and reproducibility and identifying potential sources of random and systematic error.	 Apply the following ideas to evaluate data to suggest improvements to procedures and techniques. An accurate measurement is one that is close to the true value. Measurements are precise if they cluster closely. Measurements are repeatable when repetition, under the same conditions by the same investigator, gives similar results. Measurements are reproducible if similar results are obtained by different investigators with different equipment. Measurements are affected by random error due to results varying in unpredictable ways; these errors can be reduced by making more measurements and reporting a mean value. Systematic error is due to measurement results differing from the true value by a consistent amount each time. Any anomalous values should be examined to try to identify the cause and, if a product of a poor measurement, ignored.
WS 3.8 Communicating the scientific rationale for investigations, methods used, findings and reasoned conclusions through paper-based and electronic reports and presentations using verbal, diagrammatic, graphical, numerical and symbolic forms.	Present coherent and logically structured responses, using the ideas in 2 Experimental skills and strategies and 3 Analysis and evaluation, applied to the required practicals, and other practical investigations given appropriate information.


4 Scientific vocabulary, quantities, units, symbols and nomenclature

Students should be able to:	Examples of what students could be asked to do in an exam
WS 4.1 Use scientific vocabulary, terminology and definitions.	The knowledge and skills in this section apply across the specification, including the required practicals.
WS 4.2 Recognise the importance of scientific quantities and understand how they are determined.	
WS 4.3 Use SI units (eg kg, g, mg; km, m, mm; kJ, J) and IUPAC chemical nomenclature unless inappropriate.	
WS 4.4 Use prefixes and powers of ten for orders of magnitude (eg tera, giga, mega, kilo, centi, milli, micro and nano).	
WS 4.5 Interconvert units.	
WS 4.6 Use an appropriate number of significant figures in calculation.	

Examples for discussion activity

Example 1

Figure 11 shows the students' results.

	Α	В	С	D
Mean length of shoot at start in mm	23	24	21	25
Mean length of shoot after 1 day in mm	28	30	23	30
Mean change in length of shoot in mm	5	6	2	5

0 8.4

The students concluded that the **tip** of the shoot is needed for the plant to respond to light.

Give evidence for this conclusion from Figure 11.

[2 marks]

08.4	tip covered / B / removed / C grows straight up or does not bend (towards light)	allow tip covered / B / removed / C does not respond (to light)	1	AO3 4.5.4.1
	tip exposed / A / not covered / D bends (towards light)	tip exposed / A / not covered / D does respond (to light)	1	
		allow only the ones with exposed tips or only A and D bend towards the light for 2 marks		

Example 2 Interpret and evaluate – low demand: Physics 1F Question 6.4

The UK currently generates a lot of electricity by burning natural gas. This process releases carbon dioxide into the atmosphere.

Figure 7 shows how the concentration of carbon dioxide in the atmosphere has changed over the past 115 years.

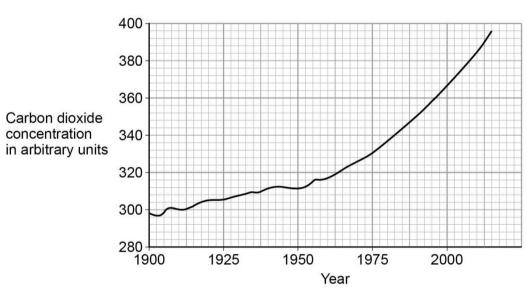
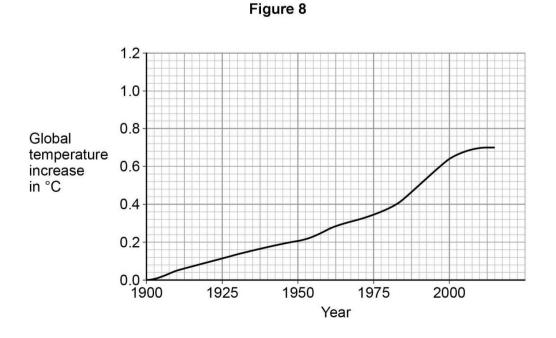



Figure 7

Figure 8 shows how the global temperature has changed over the past 115 years.

AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in England and Wales (number 3644723). Our registered address is AQA, De vas Street, Manchester M15 6EX.

Give one similarity and one difference between the data in Figure 7 and Figure 8.

[2 marks]

Similarity _____

06.4	similarity: (carbon dioxide concentration and global temperature have) both increased	allow they both show a positive correlation	1	AO3 4.1.3
	difference: the carbon dioxide (concentration) continues to increase whereas temperature (increase) levels off	allow carbon dioxide (concentration) increases more quickly than temperature (increase)	1	

Example 3 Interpret and evaluate – standard demand: Synergy 4F Question 9.4

The subject content covered by this question is common with Combined Science: Trilogy 6.5.3 (Forces and elasticity).

Figure 14 shows the results for HD poly(ethene) and LD poly(ethene).

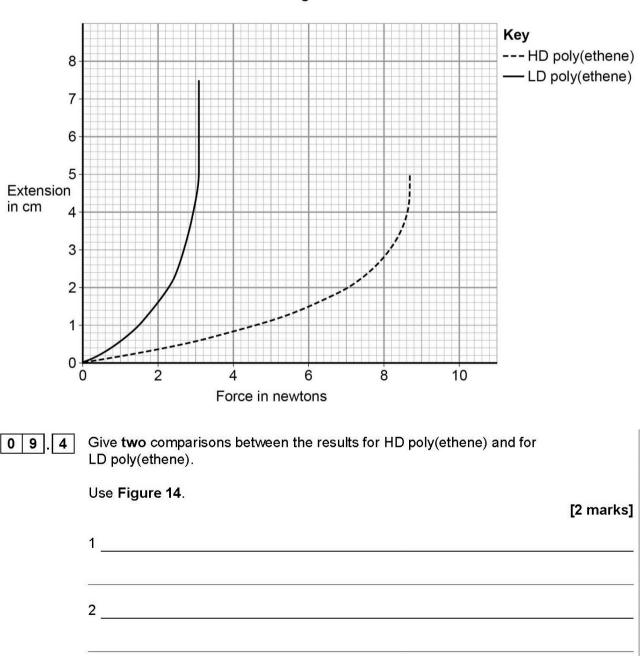
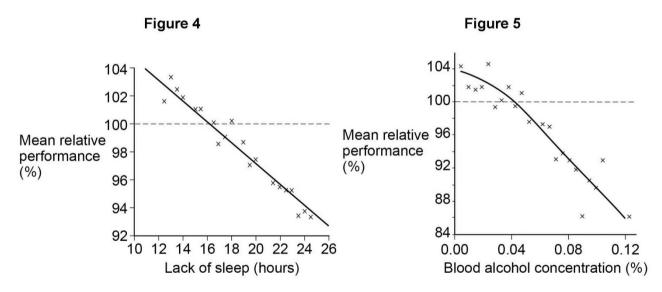


Figure 14

09.4	 any two from: both have increasing extension with increasing force 		2	AO3 4.6.1.6
	both extend non-linearly			
	 HD poly(ethene) has a smaller extension (than LD poly(ethene)) for a given force HD poly(ethene) has a smaller maximum extension (than LD poly(ethene)) 	allow LD poly(ethene) stretches more for a given force allow correct readings of extension for a given force for both polymers		
		allow HD poly(ethene) breaks at a greater (maximum) force		
		ignore references to strong / weak		

Example 4 Interpret and evaluate – high demand: Synergy 2H Question 6.5


The subject content covered by this question is common with Combined Science: Trilogy 4.5.2 (The human nervous system) and 6.5.4.3.2 (Reaction time).

Scientists investigated the effect of lack of sleep and the effect of alcohol consumption on the human nervous system.

This is the method used.

- 1. Each person completes an accuracy test using a computer.
- 2. Their average score is taken as 100%.
- 3. Half of the group are kept awake for 24 hours.
- 4. The other half of the group drink alcohol until their blood alcohol level reaches 0.12%.
- 5. Each person repeats the accuracy test at regular intervals using a computer.

Figure 4 and Figure 5 show the results of the investigation.

0 6. **5** Mean relative performance is a comparison with the person's original score. For example, 50% means their accuracy on the test was half of their original score.

If your blood alcohol concentration is above 0.08% it is against the law to drive in the UK.

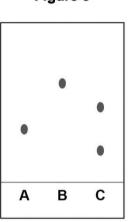
A newspaper states the following:

Driving whilst tired is as dangerous as driving after drinking alcohol.

Evaluate the newspaper's statement.

Use information from Figure 4 and Figure 5.

[4 marks]


06.5		max 3 marks if only reasons in support or reasons against given	4	AO3 4.2.1
	reasons in support:	ignore study design		
	 performance / accuracy decreases with increasing alcohol concentration and performance / accuracy decreases as lack of sleep increases reduction in performance at the legal alcohol limit / 0.08% (for driving) is the same as (more than) 24 			
	hours without sleep			
	reasons against:			
	 idea that the statement is sensationalised and does not use (quantifiable) data 			
	• the (performance) scales are different, so difficult to make comparison or the (performance) scales are different so the data is misleading			
	being tired is subjective / different for everyone	allow idea that lack of sleep does not necessarily correlate with tiredness		
	there is wide variation in the data			
	• (the graph shows that) some people have 16 / 18 hours without sleep and don't have a drop in performance			
	• at alcohol levels of 0.09% some people have a 14% drop in performance (which is much higher than lack of sleep)	allow other correct points of comparison		
	(data contradicts the statement because) for some a small amount of alcohol improves performance			

Make judgements and draw conclusions - Low demand: Chemistry 2F Question 5.3

0 5. **3** Another student sets up the apparatus correctly.

Figure 3 represents the student's results.

	What two conclusions can be n Tick two boxes.			[2 marks]	
	Flower A contains a single pure colour				
	Flowers A and B contain the same colours				
	The colour in flower C is a mixture				
	The colour in flower B was the l	east soluble			
	Two of the colours have the sar	ne R _f value			
05.3	flower A contains a single pure colour			1	AO3 4.8.1.3
	the colour in flower C is a mixture			1	

Figure 3

Make judgements and draw conclusions – Standard demand: Trilogy Biology 2F Question 6.7

Table 7 shows the results.

	Distance from tree in metres						
	0	2	4	6	8	10	
Percentage cover of grass	15	50	35	16	15	15	
Percentage cover of plantain	0	5	10	40	25	30	
Percentage cover of daisy	0	0	0	4	20	10	
Percentage cover of clover	1	10	25	40	40	45	
Total percentage cover of plants	16	65	70	100	100	100	
Light intensity in arbitrary units	37	59	150	175	>200	>200	

Table 7

0 6 7 Which plant species in Table 7 will only grow at high light intensity?

[1 mark]

06.7 daisy	1	AO3 4.7.2.1
------------	---	----------------

Make judgements and draw conclusions - High demand: Chemistry 2H Question 4.2

Another student set up the apparatus correctly.

Figure 5 represents the student's results.

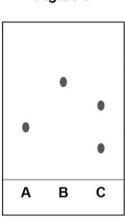
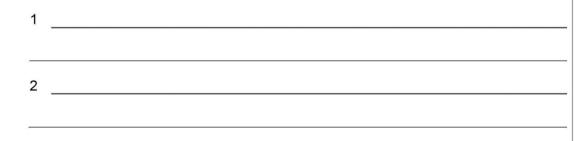



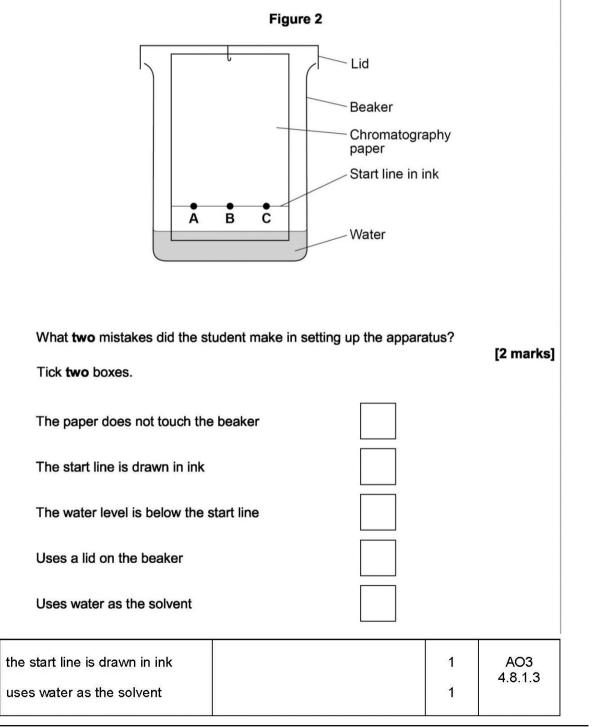
Figure 5

Give two conclusions you can make from Figure 5.

[2 marks]

04.2	 any two from: the flowers have no colours in common A / B contain one colour 	allow the flowers are not the same colour	2	AO3 4.8.1.3
	C contains two colours	allow C is a mixture of colours		
	• (the colour in) B is most soluble	allow (the colour in) B has the highest R _f value allow one of the colours in C is the least soluble		

Develop and improve experimental procedures - Low demand: Chemistry 2F Question 5.2

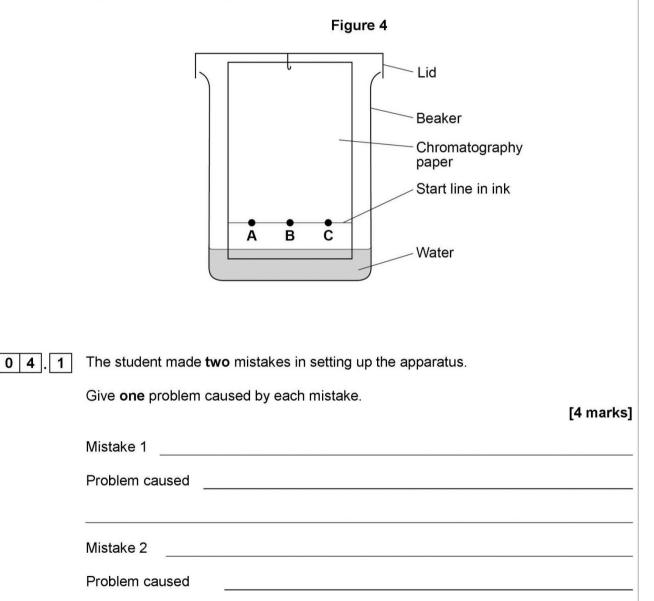


05.2

A student investigated the colours in three different flowers, **A**, **B** and **C**, using paper chromatography.

The colours are soluble in ethanol but are insoluble in water.

0 5 . 2 Figure 2 shows the apparatus used.


Develop and improve experimental procedures - High demand: Chemistry 2H Question 4.1

A student investigated the colours in three different flowers, A, B and C.

The colours are soluble in ethanol but are insoluble in water.

Figure 4 shows the apparatus used.

04.1	start line drawn in ink	allow start line should have been drawn in pencil	1	AO3 4.8.1.3
	(so) ink dissolves or ink runs in solvent / water	(as) pencil does not dissolve or pencil does not run in solvent / water	1	
	water used (as solvent) or water in beaker	allow ethanol not used	1	
	(so) colours will not dissolve / move		1	

AO3 questions at different levels of demand

Interpret and evaluate

Low-demand questions

Example 10: Physics 2F Question 4.3

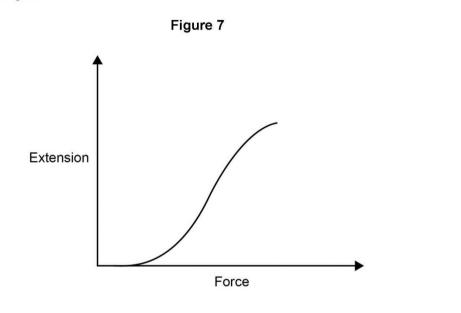
Table 2 shows the student's results.

Table 2

Number of turns of wire on the electromagnet	Number of paper clips held
10	3
20	6
30	9
40	12

0 4 . 3

Describe the pattern shown in Table 2.


[2 marks]

04.3	as the number of turns increases so does the number of paper clips (held)	allow positive correlation	1	AO3 4.7.2.1
	in a linear pattern	directly proportional scores 2 marks allow a correct description of directly proportional for 2 marks	1	

Example 11: Trilogy Physics 2F Question 5.3

0 5.3

Figure 7 shows how the extension of the resistance band changes as the force applied changes.

Describe the trend shown in the graph.

[2 marks]

any two from: initially the band does not stretch when a force is applied 	allow a certain force is needed before the band extends	2	AO3 6.5.3
 (when extending) as force increases the extension increases 			
 the relationship is non- linear 	allow the increase is not proportional do not accept directly		
	 initially the band does not stretch when a force is applied (when extending) as force increases the extension increases the relationship is non- 	 initially the band does not stretch when a force is applied (when extending) as force increases the extension increases the relationship is non- linear allow a certain force is needed before the band extends 	 initially the band does not stretch when a force is applied (when extending) as force increases the extension increases the relationship is non- linear allow a certain force is needed before the band extends allow the increase is not proportional do not accept directly

Example 12: Chemistry 1F Questions 4.2 and 4.3

Figure 6 shows the results of the investigation.

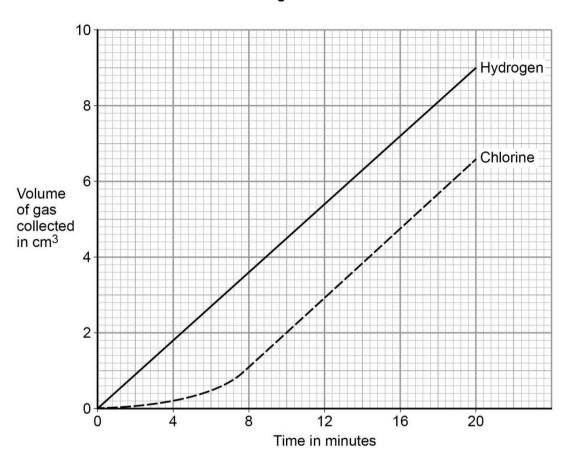
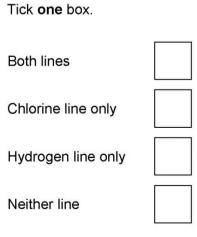
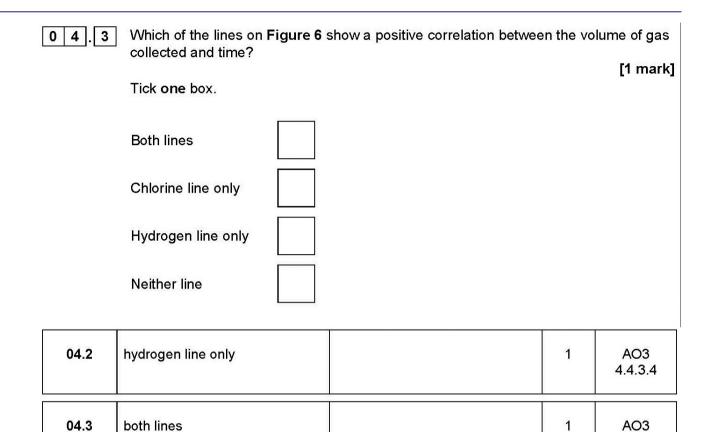



Figure 6

Which of the lines on **Figure 6** show that the volume of gas collected is directly proportional to the time?


[1 mark]

0 4

2

AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in England and Wales (number 3644723). Our registered address is AQA, De vas Street, Manchester M15 6EX.

4.4.3.4

Example 13: Biology 2F Question 2.5

0 2 5 Table 2 gives information about some different methods of contraception.

	Table	2
Method	Number of pregnancies per 100 women in one year	Possible Side effects
Diaphragm and spermicidal cream	8	Usually none, but can cause bladder infection in some women
Condom	2	None
Contraceptive pill	1	Mood swings, headaches, high blood pressure, blood clots, breast cancer

A man and a woman decide to use the condom as their method of contraception.

1_____

Suggest three reasons for this decision.

Use information from Table 2 and your own knowledge.

[3 marks]

. <u></u>	 		
3	 	 	

02.5	more reliable than diaphragm / spermicidal cream	allow fewer pregnancies than diaphragm / spermicidal cream	1	AO3 4.5.3.8
	low chance of pregnancy	allow only 1 more pregnancy than the pill (per 100 women per year)	-1	
		allow almost as good as the pill		
	no side effects	allow reference to one named example	1	
		allow easy to get / buy		
		allow easy to use		
		allow prevent / reduce spread of STDs / gonorrhoea / HIV		
		ignore cost		

Example 14: Biology 1F Question 4.7

Coronary heart disease can be treated by:

- inserting a stent
- using a Coronary Artery Bypass Graft (CABG).

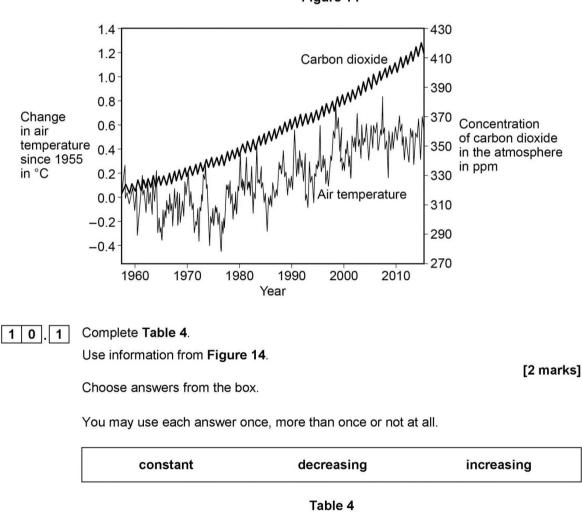
Table 2 gives information about each method.

Table 2	
---------	--

	Stent	CABG
Procedure	The patient is awake during the procedure.	The patient is not awake during the procedure.
	A small cut is made in the skin.	The chest is cut open.
	A wire mesh is inserted into the coronary artery via a blood vessel in the arm or leg.	A section of blood vessel from the arm or leg is removed. It is used to create a new channel for blood to bypass the blockage in the coronary artery.
When procedure is recommended	When only one blockage is present	When multiple blockages are present
Time spent in hospital after procedure	2-3 hours	at least 7 days
Recovery time after procedure	7 days	12 weeks
Risk of heart attack during procedure	1%	2%
Chance of failure within one year	40%	5%

04.7	Give two advantages of using a stent instead of CABG.	[2 marks]
	1	
	2	

04.7	any two from:		2	AO3
	no need to stay as long in hospital (after procedure) or can go home sooner / same day	allow only need to stay 2–3 hours in hospital (after procedure) allow less scarring		4.2.2.
	 not as / less invasive or no need for a major operation or no need for general anaesthetic 	allow less chance of infection allow only a small cut needed		
	shorter recovery time or can get back to normal lifestyle quicker or less time needed off work	allow only 7 days recovery		
	lower risk of a heart attack (during procedure)			
		ignore reference to cost ignore idea that it takes less time overall		


Standard-demand questions

Example 15: Biology 2F Question 10.1

1 0

Many scientists think that global air temperature is related to the concentration of carbon dioxide in the atmosphere.

Figure 14 shows changes in global air temperature and changes in the concentration of carbon dioxide in the atmosphere.

	1960 – 1977	1977 – 2003	2003 – 2015
Trend in carbon dioxide concentration	Increasing		
Trend in air temperature			

Figure 14

10.1	2	1960–1977	1977–2003	2003–2015		AO3 4.7.3.5
	trend in carbon dioxide concentration		increasing	increasing	1	
	trend in air temperature	decreasing	increasing	constant / decreasing	1	

Example 16: Biology 1F Question 8.4

Regular exercise can increase metabolic rate.

Two people did five minutes of gentle exercise from rest.

Table 6 shows the effect of the exercise on their heart rates.

Time in	Heart rate in beats per minute			
minutes	Person R	Person S		
0 (at rest)	60	78		
1	76	100		
2	85	110		
3	91	119		
4	99	129		
5	99	132		

Table 6

0 8 4 Describe two differences in the response of person R and person S to the exercise.

> 1 _____ 2

Use information from Table 6.

[2 marks]

08.4	any two from: • (person) R heart rate rose /	allow converse	2	AO3 4.4.2.2
	increased more slowly than (person) S			
	 (person) R heart rate levelled off whereas (person) S continued to increase 			
	• (person) R heart rate rose less (overall / after 5 minutes of exercise) than S	allow correct use of figures eg R increased (overall) by 39 bpm / 65% and S by 54 bpm / 69% ignore lack of units		

Example 17: Synergy 2F Question 8.5

0 8

The subject content covered by this question is common with Combined Science: Trilogy 5.10.1.2 (Potable water).

Another method of purifying water is Solar Disinfection (SODIS).

Table 4 gives some information about both methods.

Method	Description	Percentage reduction in pathogens that cause diarrhoea
	Before use, it needs to be left for 2 weeks for the bacteria in the unit to grow.	
Biosand unit	Can treat 40 litres of water per hour.	47
	Made of concrete.	
	Needs replacing every 10 years.	
	Plastic bottles are filled with water and left in sunlight. Ultraviolet (UV) kills bacteria.	
SODIS	Bottles need to be left in sunlight for at least 8 hours.	31
	Bottles have to be replaced every 6 months.	

Table 4

Give two advantages of using the Biosand unit instead of SODIS.	[2 marl
1	
3	
2	

08.5	any two from:		2	AO3
	 filters a lot of water per hour or high filtration rate (concrete) heavy so cannot be knocked over / stolen 	allow produces more clean water (in a given time)		4.4.1.
	 higher reduction in pathogens (that cause diarrhoea) low maintenance faster (than SODIS) or don't have to wait 8 hours not weather dependent (like SODIS) needs replacing less frequently 	allow 47% reduction instead of 31% reduction		

Example 18: Trilogy Physics 1F Question 7.3

0 7.3

The student is given a piece of a different plastic material.

The student determined the density of the material three times.

Table 4 shows the results.

	Density in kg/m ³
1	960
2	1120
3	1040

Table 4

Determine the uncertainty in the student's results.

[2 marks]

kg/m³

Uncertainty = ____

07.3	an answer of 80 scores 2 marks		AO3 6.3.1.1
(1120 - 960)	ignore + and / or - signs	1	0.5.1.1
$= 80 (kg/m^3)$	an answer of 160 scores 1 mark	1	

High-demand questions

Example 19: Physics 2H Question 5.4

Table 2

	Angle of reflection				
Angle of incidence	Test 1	Test 2	Test 3	Test 4	
20°	19°	22°	20°	19°	
30°	31°	28°	32°	30°	
40°	42°	40°	43°	41°	
50°	56°	49°	53°	46°	

0 5.3

Estimate the uncertainty in the angle of reflection when the angle of incidence is 50°.

Show how you determine your estimate.

[2 marks]

0

Uncertainty = +

05.3	range = 10 or mean of 51 calculated	an answer of 5(°) scores 2 marks	1	AO3 4.6.1.3
	5(°)		1	

Make judgements and draw conclusions

Low-demand questions

Example 20: Synergy 4F Question 2.7

Table 3 shows the diameter of atoms of Group 1 elements.

Element	Diameter of atom in nanometres
Lithium	0.304
Sodium	0.372
Potassium	x
Rubidium	0.496
Caesium	0.530

Table 3

0 2.7 Predict value X in Table 3.

[1 mark]

X = _____ nanometres

	an answer in the range 0.373–0.495 (nanometres)		1	AO3 4.5.1.4
--	--	--	---	----------------

Example 21: Chemistry 2F Question 3.1

Polymers are used to make fabrics.

Table 1 shows some properties of two polymers.

-	1.3	S. 1		
Т			~	
	а		e	
			•	

Property	Polymer J	Polymer K
Density in g/cm ³	0.9	1.4
Melting point in °C	165	260
Flame resistance	Poor	Good
Water absorption	Low	High

0 3.1

Polymer fabrics are used to make firefighter uniforms.

Complete **Table 2** by deciding for each property whether polymer **J** or polymer **K** is **best** for firefighter uniforms.

Use Table 1.

Density has been completed for you.

Tick three boxes.

[2 marks]

Table 2

Property	Polymer J	Polymer K
Density in g/cm ³	✓	
Melting point in °C		
Flame resistance		
Water absorption		

03.1	property	J	ĸ	three correct = 2 marks	2	AO3 4.10.1.1
	density in g/cm ³			one or two correct = 1 mark		4.10.3.3
	melting point in °C		~			
	flame resistance		~			
	water absorption	~				

Standard-demand questions

0 7

Example 22: Physics 2H Question 7.2

A student used a simple transformer to investigate how the number of turns on the secondary coil affects the potential difference (p.d.) across the secondary coil.

The student kept the p.d. across the primary coil fixed at 2V.

Figure 12 shows the results collected by the student.

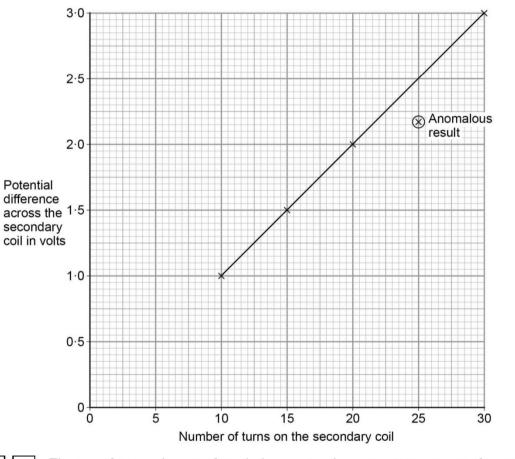


Figure 12

0 7 . 2 The transformer changes from being a step-down to a step-up transformer.

How can you tell from Figure 12 that this happens?

[1 mark]

07.2	the p.d. (across the secondary) goes above 2V	allow p.d. across secondary is higher than p.d. across primary after 20 turns	1	AO3 4.7.3.4
------	--	---	---	----------------

High-demand questions

Example 23: Synergy 4H Question 5.3

The subject content covered by this question is common with Combined Science: Trilogy 5.4.3.4 (Electrolysis of aqueous solutions).

The students made the following hypothesis:

'The mass of copper deposited on the negative electrode will be directly proportional to the current.'

Table 4 shows the students' results.

Current in amps	Mass of copper deposited on the negative electrode in grams
0.12	0.024
0.24	0.047
0.36	0.057
0.48	0.095
0.60	0.118
0.72	0.142

Table 4

0 5 3

Student A said that the results did support the hypothesis.

Student B said that the results did not support the hypothesis.

Explain the extent to which the data in Table 4 supports the students' hypothesis. [4 marks]

05.3	calculation / statement including data to show effect of doubling current on mass of copper deposited	allow 1 mark for recognising that comparing doubling of one quantity to doubling of another is needed or allow 1 mark for recognising that a scaling factor needs to be applied	2	AO3 4.7.5.
	calculation of two quotients, eg $\frac{0.24}{0.047} = 5.11$ $\frac{0.48}{0.095} = 5.05$	could be opposite way round (giving around 0.2)		
	(therefore) results support student A or results show direct proportionality	this mark must be supported by relevant calculations / statements	1	
	(however) there is an anomalous result at 0.36 A, 0.057 g	allow in terms of quotient (6.32 instead of ~5 or 0.16 instead of ~0.2)	1	

Example 24: Trilogy Physics 1H Question 4.4

Table 3 shows the half-lives of two of the radioactive isotopes that contaminated the environment.

Table	3
IGNIC	•

Isotope	Half-life
Caesium–137	30 years
lodine-131	8 days

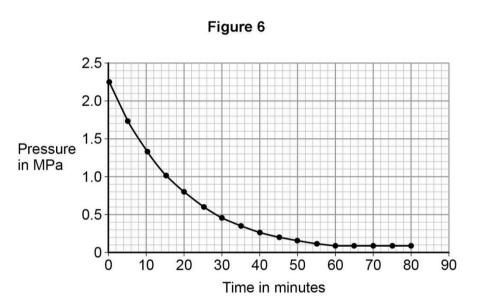
0 4. **4** A soil sample was taken from the area around Chernobyl in 1986

The soil sample was contaminated with equal amounts of caesium-137 and iodine-131

Explain how the risk linked to each isotope has changed between 1986 and 2018

Both isotopes emit the same type of radiation.

[4 marks]


04.4	risk / activity associated with iodine-131 has decreased by a large amount		1	AO3 6.4.2.3
	because of short half-life	allow many half-lives have passed allow half-life is only 8 days	1	
		2nd marking point dependent on 1st marking point		
	risk / activity associated with caesium-137 will not have decreased by much	allow activity has halved	1	
	because of long half-life	allow only one half-life has passed	1	
		4th marking point dependent on 3rd marking point		

Example 25: Trilogy Physics 1H Question 3.5

A canister of air was tested to find out how the pressure changed when it was used by a diver.

- · Air was allowed to escape from the canister.
- The pressure of the air in the canister was recorded every 5 minutes for 80 minutes.

Figure 6 shows the results.

0 3.5 Divers can safely stay underwater until the pressure of the air in the canister has reduced to 25% of its original value.

Determine the maximum time the diver can safely stay underwater.

Use Figure 6

[3 marks]

Time = _____minutes

03.5		an answer of 27 scores 3 marks		AO3
	$p = 2.25 \times \left(\frac{25}{100}\right)$	allow any correct method of determining 25% of 2.25 allow use of 2.2–2.3	1	
	p = 0.56	allow 0.55–0.575	1	
	t = 27 (minutes)	allow 26–28 minutes allow correct value of t using their calculated value of p	1	

Develop and improve experimental procedures

Low-demand questions

0 6

Example 26: Chemistry 1F Question 6.6

A student investigated the temperature change in displacement reactions between metals and copper sulfate solution.

This is the method used.

- 1. Measure 50 cm³ of the copper sulfate solution into a polystyrene cup.
- 2. Record the starting temperature of the copper sulfate solution.
- 3. Add the metal and stir the solution.
- 4. Record the highest temperature the mixture reaches.
- 5. Calculate the temperature increase for the reaction.
- 6. Repeat steps 1-5 with different metals.

0 6 . 6 Y is an unknown metal.

Describe a method to find the position of Y in the reactivity series in Question 06.5 [3 marks]

06.6	suitable method described the observations / measurements required to place in order	1	AO3 4.4.1.2 4.5.1.1
	an indication of how results would be used to place the unknown metal in the reactivity series	1	
	approaches that could be used: approach 1:		
	add the unknown metal to copper sulfate solution (1) measure temperature change (1) place the metals in order of temperature change (1)		

06.6 cont.	approach 2: add the metal to salt solutions of the other metals or heat the metal with oxides of the other metals (1)	
	measure temperature change (only if salt solutions used) or	
	observe whether a chemical change occurs (1)	
	compare temperature change or whether there is a reaction to place in correct order (1)	
	approach 3: add all of the metals to an acid (1)	
	measure temperature change or means of comparing rate of reaction (1)	
	place the metals in order of temperature change or rate of reaction (1)	
	approach 4: set up electrochemical cells with the unknown metal as one electrode and each of the other metals as the other electrode (1)	
	measure the voltage of the cell (1)	
	place the metals in order of voltage (1)	

Example 27: Biology 2F Question 8.1

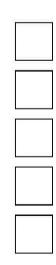
Some students investigated phototropism in plant seedlings.

This is the method used.

- 1. Measure the lengths of the shoots of 20 seedlings.
- 2. Set up four groups of seedlings as follows:
 - A bottom of shoot covered in aluminium foil
 - B tip covered in aluminium foil
 - C tip removed
 - D no changes.
- 3. Put the seedlings in a cardboard box.
- 4. Use a lamp to shine a light into the box through a hole in one side.
- 5. After one day, re-measure the lengths of the shoots.
- 6. Make a drawing of the appearance of one seedling from each group.

0 8 . 1 Which two conditions should the students have kept constant for each group of seedlings?

[2 marks]

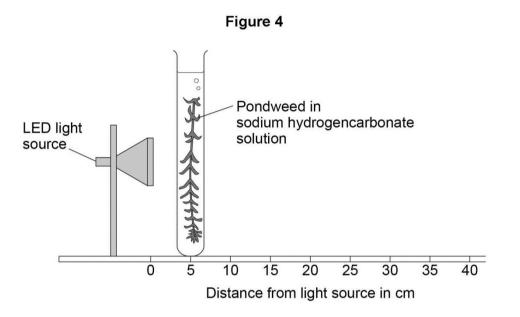

Tick two boxes.

The length of the roots

The number of seedlings in each group

The temperature

The thickness of the aluminium foil


The volume of water added to the soil

08.1 the temperature	1 AO3
the volume of water added to	4.5.4.1
the soil	1

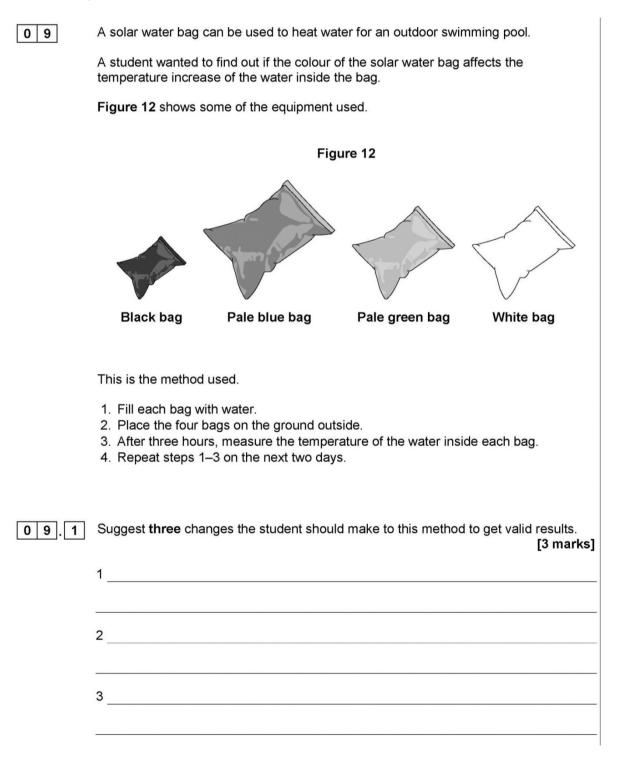
Example 28: Trilogy Biology 1F Question 2.2

A student investigated the effect of light intensity on the rate of photosynthesis.

Figure 4 shows the apparatus.

This is the method used.

- 1. Place the pondweed at 5 cm from the light source.
- 2. Measure the rate of photosynthesis by counting the number of bubbles produced in 30 seconds.
- 3. Repeat the investigation with the pondweed at different distances from the light source.


02.2	How could the student measure the rate of photosynthesis more accura Tick two boxes.	itely? [2 marks]
	Count the number of bubbles produced in 1 minute	
	Measure the change in mass of the pondweed in 30 seconds	
	Measure the volume of gas produced in 30 seconds	
	Place the pondweed further from the light source	
	Use water instead of sodium hydrogencarbonate solution	

02.2	count the number of bubbles produced in 1 minute	extra ticks negates marks	1	AO3 4.4.1.
	measure the volume of gas produced in 30 seconds		1	

Standard-demand questions

Example 29: Synergy 2F Question 9.1

The subject content covered by this question is common with Combined Science: Trilogy 6.6.2 (Electromagnetic waves).

e area of bag sun) e / mass of	allow same sized bag allow same amount of water		4.1.4.
is out in same ions ess of material /	allow measure temperature at the start		
	s out at the is out in same ions	s out at the is out in same ions ess of material / f material (for	s out at the is out in same ions ess of material / f material (for

Example 30: Physics 2H Question 7.1

0 7

A student used a simple transformer to investigate how the number of turns on the secondary coil affects the potential difference (p.d.) across the secondary coil.

The student kept the p.d. across the primary coil fixed at 2V.

Figure 12 shows the results collected by the student.

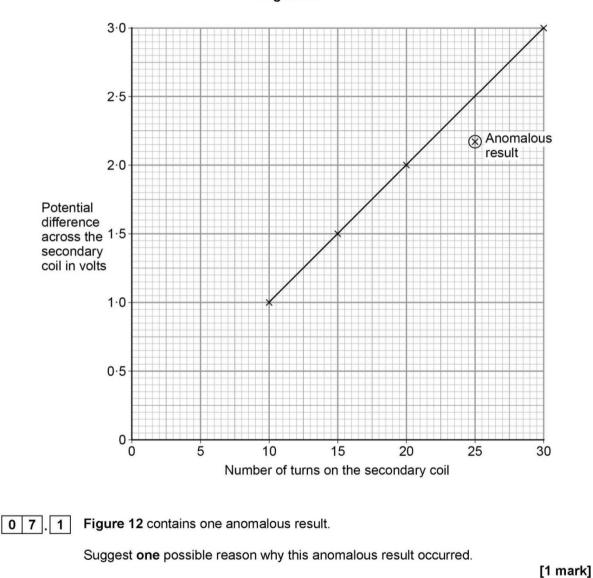
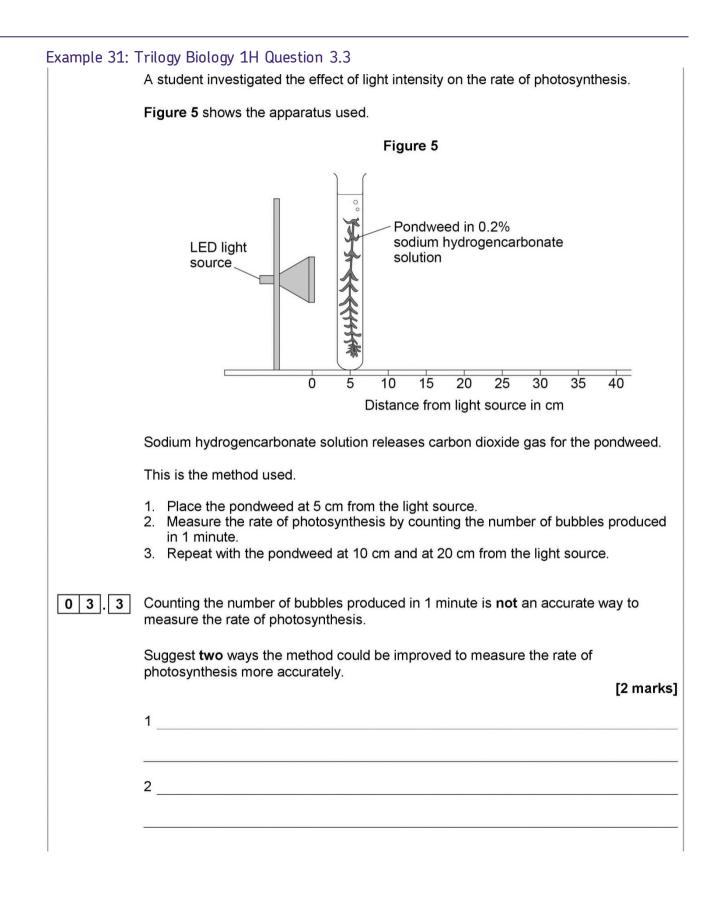



Figure 12

07.1	 any one from: too few turns / coils on the secondary p.d. across the primary was reduced 	allow number of turns / coils on the primary was increased	1	AO3 4.7.3.4
	leduced	ignore human error		

03.3	measure the volume of gas released	allow use a measuring cylinder / capillary tube / (gas) syringe	1	AO3 4.4.1.2
	increase length of time	allow sensible length of time	1	
		allow video the investigation so you could re-count the bubbles later		
		allow repeat the measurement at each distance several times and calculate a mean		
		ignore references to using other distances		

High-demand questions

Example 32: Biology 1H Question 4.4

A student carried out an investigation using chicken eggs.

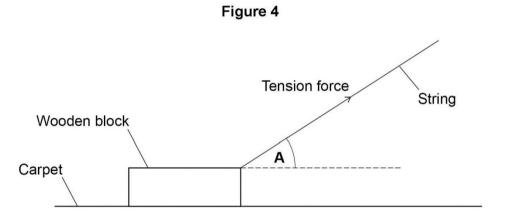
This is the method used.

- 1. Place 5 eggs in acid for 24 hours to dissolve the egg shell.
- 2. Measure and record the mass of each egg.
- 3. Place each egg into a separate beaker containing 200 cm³ of distilled water.
- 4. After 20 minutes, remove the eggs from the beakers and dry them gently with a paper towel.
- 5. Measure and record the mass of each egg.

0 4. **4** Explain how the student could modify the investigation to determine the concentration of the solution inside each egg.

[3 marks]

04.4	use five (or more) different concentrations of salt / sugar solution (in beakers)	allow any number of concentrations provided it is more than four	1	AO3 4.1.3.2
	(by) plotting percentage change (in mass / volume) on / using a graph		1	
	determine the concentration where the curve / line crosses the zero percentage change (in mass / volume)		1	


Example 33: Synergy 4H Question 3.5

The subject content covered by this question is common with Combined Science: Trilogy 6.5.1.1 (Scalar and vector quantities) and 6.5.1.2 (Contact and non-contact forces).

Figure 4 represents a wooden block being pulled across a surface at a constant speed in a straight line.

The block is in contact with the surface.

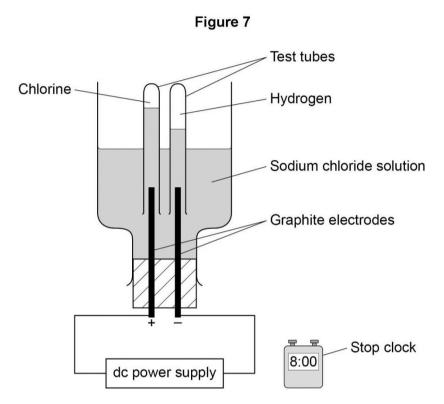
The arrow in Figure 4 represents the tension force in the string pulling the block.

A student collects data on the size of the force required to pull the block across different surfaces at a constant speed.

Table 2 shows the results.

Table 2

Type of	Force in N			Mean force
surface	Trial 1	Trial 2	Trial 3	in N
Cardboard	1.4	1.6	1.5	1.5
Carpet	2.6	3.1	3.9	3.2
Glass	0.7	0.8	0.6	0.7
Sandpaper	5.2	x	5.3	5.4



	03.5	 speed (at which block is pulled) area of block in contact with surface 	pulled)	3	AO3 4.6.1.1
--	------	---	---------	---	----------------

Example 34: Chemistry 1H Question 6.3

The student investigated how the volume of gases produced changes with time in the electrolysis of sodium chloride solution.

Figure 7 shows the apparatus.

0 6 . 3 The student made an error in selecting the apparatus for this investigation.

How should the apparatus be changed?

Give one reason for your answer.

[2 marks]

06.3	use measuring cylinders (instead of test tubes)	allow use burettes allow use (gas) syringes allow Hoffmann voltameter	1	AO3 4.4.3.4
	(because) test tubes cannot measure volume or (because) test tubes have no graduations / scale	allow (so that) volume can be measured	1	

Making the best use of ERA

Accessing ERA

A / Contact us / Secure services / Enhanced Results Analysis (ERA)

- Past results and lost certificates
-

Subject departments

Exams administration

Relationship managers

Our offices

Complaints and feedback

Secure services

e-AQA: our secure extranet

Examiner Extranet

Enhanced Results Analysis (ERA)

> Enhanced Results Analysis (ERA) video tutorials

Exhibitions

Enhanced Results Analysis (ERA)

Compare GCSE, AS and A-level exam results online across subjects, topics and questions, across your whole school or college, and against other schools.

Log in to ERA

Log in to e-AQA (our secure extranet) and select Enhanced Results Analysis. If you're logging into e-AQA for the first time, you'll need to register.

Exam results analysis tool

Use our exam results analysis tool to create and customise as many different reports for comparison as you like.

- · See how individual students perform on specific topics
- · Take a snapshot of the range of grades across your whole school or college
- · See results by qualification, by exam, by class, by component even by individual question
- · Compare results and performance year-on-year
- · Compare results against other AQA schools around the country
- · See exactly where students have lost marks and highlight areas where individuals might be struggling

User guide and video tutorials

Take a look at our 📾 step-by-step user guide (1.6 MB) 💾

Watch our four video tutorials for step-by-step instructions on how to use ERA to measure:

- school or college performance
- subject performance
- individual student performance
- group performance (set up your own groups for comparison).

Video: Unleash the potential with Enhanced Results Analysis

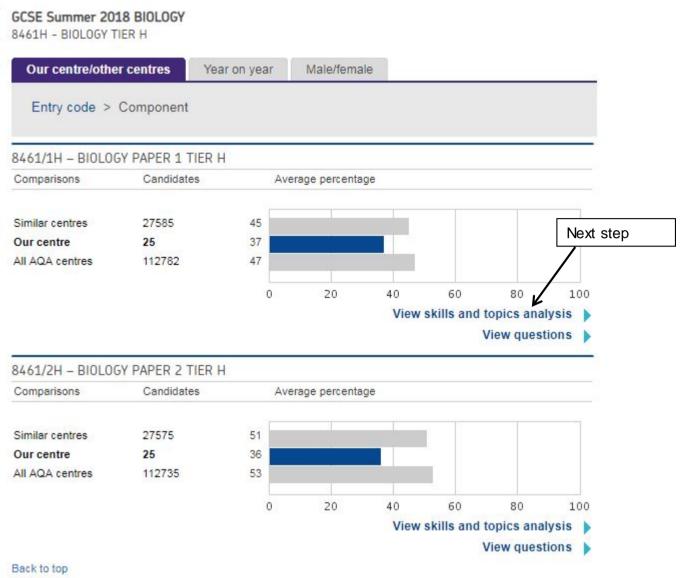
Watch the short video below for a general overview of ERA's benefits.


What does ERA give you?

- Evidence of perceived weakness
- Evidence for exams report to head of school
- Measure of impact of targeted intervention to specific groups
- Enable targeted amends to SOW and topic tests
- Identify sources of good practice in the department
- Recognise inconsistencies in teaching and learning approaches
- Using year-on-year analysis means can see any effects of interventions

Drilling down through ERA data

Look at data by subject or paper

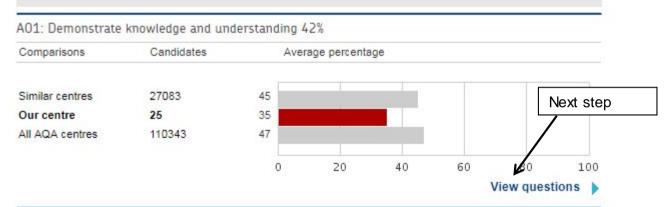

GCSE Summer 2018 BIOLOGY

Back to top

The next step takes you to a more detailed breakdown of the components for the specification. In this case, Paper 1 and Paper 2.

Skills and topics analysis

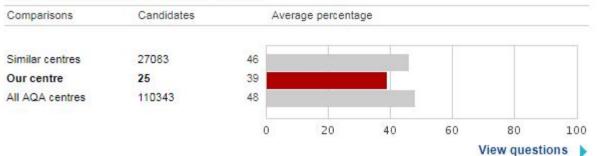
Choosing View skills and topics analysis takes you to the screen where you can see how your students have performed with regards to Assessment Objective, Specification reference, Skill (Extended response, Maths, Required practical), Topic. Comparison is shown with other centres.

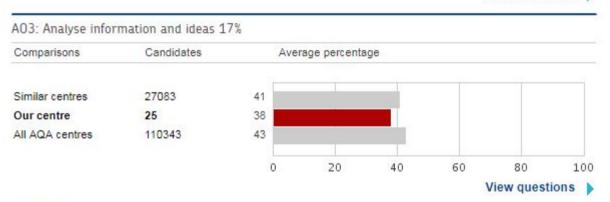

GCSE Summer 2018 BIOLOGY

8461/1H - BIOLOGY PAPER 1 TIER H

Our centre/other centres

Entry code > Component > Skills and topics analysis

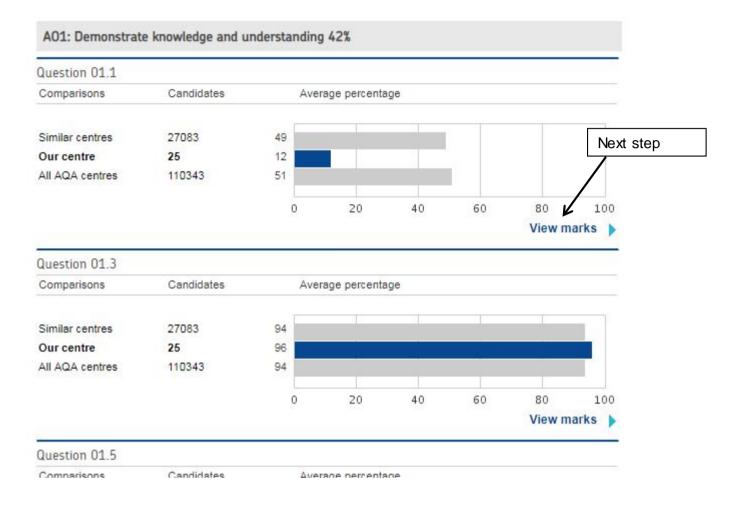

Assessment objective



Assessment objective

•

AO2: Apply knowledge and understanding 42%



Back to top

From here you can drill down to get question level data, where you will find your school's average marks compared with other AQA centres against the AO, skill area or topic area.

Question level data

Mark distributions by question

This final screen shows the mark distribution by question for your students. It also shows individual student data (not included as this is live data).

Maximum mark: 2	Total candidates: 25	
Made as bis and		
Mark achieved	No of candidates	
o	9	
	10	
2	6	

Individual performance

Download ERA data

You can download any or all of your results and analyse them in applications, such as Microsoft Excel.

The download option allows you to:

- perform your own analysis
- copy the data into existing spreadsheets
- create your own graphs
- save the graphs as images and insert them into your own reports.

Resources

Changes from the spring update are highlighted. New tables outlining the resources available for Entry Level Certificate and some information from Ofqual that may be of interest have also been added.

Previous Hub meetings

Meeting session	Material covered	Location
Spring 2019	Marking extended response questions using student examples from Summer 2018	Available on current Hub page aqa.org.uk/subjects/science/hub- schools-network
Autumn 2018	Discussion of student work from summer 2018 exams covering marking of complex calculations	Available on current Hub page: aqa.org.uk/subjects/science/hub- schools-network
Spring 2018	Marking extended response questions	Available on current Hub page: aqa.org.uk/subjects/science/hub- schools-network
Autumn 2017	Discussion of practical work and AO2-focused questions	Archive of Hub materials: access from link on current Hub page or directly: aqa.org.uk/subjects/science/hub- schools-network/science-meeting- materials-archive
Summer 2017	Discussions on maths in science, Required practicals, stretch and challenge	Archive of Hub materials: access from link on current Hub page or directly: aqa.org.uk/subjects/science/hub- schools-network/science-meeting- materials-archive
Spring 2017	Sample high-demand questions, practical work, structure of the new papers, which includes explanation of how physics equations will be assessed	Archive of Hub materials: access from link on current Hub page or directly: aqa.org.uk/subjects/science/hub- schools-network/science-meeting- materials-archive

General information and guidance

Resource	Description	Location Plan/Teach/Assess are all found on the subject page of our website
Guidance on tiering	Ofqual's tiering decisions for 2019. Link to specific guidance on choosing the appropriate tier for your students	aqa.org.uk/news/updated- science-tiering-guide- foundation-or-higher Tiering guide and poster also available on Plan
How the 9 to 1 grading scale is applied to GCSE Combined Science	Updated information on awarding grades for the GCSE Combined Science specifications A similar document is available directed at the separate science GCSEs	Assess
Navigation guide to exam preparation	Poster outlining resources and links to help with exam preparation	Assess
Co-teaching combined science and separate sciences	List of topics common between combined science and each separate science. Shows extra content that is separates only	Plan
Command word document	List of command words and an explanation of what is expected in a response	Teach
Subject-specific vocabulary	Definitions of working scientifically terms	Teach
Steps to success	Resources to support literacy, working scientifically, revision and exam techniques	Teach
Our exams explained	Booklet covering the different types of questions used in our papers	Assess
Making questions clear	Booklet covering how we make our assessments accessible to students and how we develop questions during the question paper process	Assess
Teaching guide: sample AO2 questions and mark	A simple explanation of what AO2 is and the type of questions that cover AO2. There are some suggestions	Teach

schemes	on how teachers might approach integrating it into lessons	
Schemes of work	Schemes of work for all GCSE Sciences.	Teach
	NB for Combined Science: Trilogy there are also schemes of work for Foundation Tier only	

Maths in science

Resource	Description	Location
Maths PowerPoints	Slides to incorporate into lessons to support the teaching of the maths skills	Teach/Maths skills in GCSE
Sample questions: maths in science	Selection of questions taken from the 1 st set of SAM which illustrate how the range of maths skills might be assessed at different levels of demand	Teach/Maths skills in GCSE
GCSE Science: Delivering the mathematical requirements	Powerpoint looking at basic maths skills and putting them into a science context	Teacher support tab of any of the GCSE sciences on Secure Key Materials (e- AQA)
The Language of Mathematics in Science: A guide for teachers of 11-16 science	Guidance produced by the Association for Science Education, in conjunction with the Nuffield Foundation, intended to achieve common understanding of important terms and techniques related to the use of mathematics in the science curriculum. There is an associated book on teaching approaches	Free to download from the ASE website: <u>ase.org.uk/mathsinscience</u>

Practical work

Resource	Description	Location
Technician Advisors	Practical experts with classroom experience, who can answer questions on setting up practical work-based lessons	Teach/Practicals/Technician Advisors
Practical handbooks	Teacher and technician notes and student worksheets covering suggested methods for the required practicals	Teach/Practicals
Practical work and learning outcomes	This summary shows possible aims and learning outcomes which teachers could use for each of the RPAs	Spring 2017 Hub meeting
Teaching guide: effective use of practicals	Series of slides summarising all our information about practical requirements and a suggested teaching approach to make the most out of practical lessons	Teach/Practicals
How practical skills are assessed	Selection of questions taken from the 1 st set of SAM which illustrate how practical skills may be assessed for each of the AOs	Teach/Practicals
Supporting effective practical work	Presentation on practical work based on the Combined Science practicals, which could also be used for separate sciences	Teacher support tab for Combined Science on Secure Key Materials (e- AQA)

Entry Level Certificate

Resource	Description	Location
ELC getting started	CPD training for teachers new to ELC Science : online training	aqa.org.uk/professional- development/course- details?meta_E=SCIEGW2
Co-teaching ELC and Combined Science: Trilogy, Co- teaching ELC and Combined Science: Synergy	Guidance on teaching ELC science with Foundation tier Combined Science	Plan
ELC teaching guide	Background information on the course, suggestions for practical activities, supporting information on outcomes, keywords	Teach
ELC Schemes of work	Guidance on teaching the individual components	Teach
Specimen Teacher Devised Assignments	Example writing frames for TDAs for each component	Assess
Maximising outcomes for Foundation learners	Guidance on co-teaching ELC with Foundation tier Combined Science	Teacher support tab for ELC Science on Secure Key Materials (e-AQA)

Ofqual resources

Resource	Description	Location
Ofqual blog: 11 things we know about marking and 2 we don't yet	Ofqual blog gives some insights into marking in UK exams from the regulator's point of view	<u>ofqual.blog.gov.uk/2019/03/</u> <u>05/14572/</u>
Ofqual blog: how do we achieve fairness in exams?	Gives some insights on how Ofqual ensures that the qualifications system is fair	ofqual.blog.gov.uk/2019/04/ 26/how-do-we-achieve- fairness-in-exams/
How grade boundaries are set	Video from Ofqual outlining the awarding process	twitter.com/ofqual/status/11 22417684946268160

Notes

Contact us

T: 01483 477 756

E: gcsescience@aqa.org.uk or alevelscience@aqa.org.uk

aqa.org.uk