

AS Physics data and formulae

For use in exams from the June 2016 Series onwards

DATA - FUNDAMENTAL CONSTANTS AND VALUES

Quantity	Symbol	Value	Units
speed of light in vacuo	С	3.00×10^8	m s ⁻¹
permeability of free space	μ_0	$4\pi\times10^{-7}$	H m ⁻¹
permittivity of free space	\mathcal{E}_0	8.85×10^{-12}	F m ⁻¹
magnitude of the charge of electron	e	1.60×10^{-19}	С
the Planck constant	h	6.63×10^{-34}	J s
gravitational constant	G	6.67×10^{-11}	${\rm N~m^2~kg^{-2}}$
the Avogadro constant	N_{A}	6.02×10^{23}	mol^{-1}
molar gas constant	R	8.31	$\rm J~K^{-1}~mol^{-1}$
the Boltzmann constant	k	1.38×10^{-23}	J K ⁻¹
the Stefan constant	σ	5.67×10^{-8}	$W\ m^{-2}\ K^{-4}$
the Wien constant	α	2.90×10^{-3}	m K
electron rest mass (equivalent to $5.5 \times 10^{-4} \text{ u}$)	$m_{ m e}$	9.11×10^{-31}	kg
electron charge/mass ratio	$rac{e}{m_{ m e}}$	1.76×10^{11}	$\rm C~kg^{-1}$
proton rest mass (equivalent to 1.00728 u)	$m_{ m p}$	$1.67(3) \times 10^{-27}$	kg
proton charge/mass ratio	$rac{e}{m_{ m p}}$	9.58×10^7	$ m C~kg^{-1}$
neutron rest mass (equivalent to 1.00867 u)	$m_{ m n}$	$1.67(5) \times 10^{-27}$	kg
gravitational field strength	g	9.81	${ m N~kg^{-1}}$
acceleration due to gravity	g	9.81	$\mathrm{m}\;\mathrm{s}^{-2}$
atomic mass unit (1u is equivalent to 931.5 MeV)	u	1.661×10^{-27}	kg

ALGEBRAIC EQUATION

quadratic equation $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

ASTRONOMICAL DATA

Body	Mass/kg	Mean radius/m
Sun	1.99×10^{30}	6.96×10^{8}
Earth	5.97×10^{24}	6.37×10^6

GEOMETRICAL EQUATIONS

arc length	$= r\theta$
circumference of circle	$=2\pi r$
area of circle	$=\pi r^2$
curved surface area of cylinder	$=2\pi rh$
area of sphere	$=4\pi r^2$
volume of sphere	$=\frac{4}{3}\pi r^3$

Version 1.2

Particle Physics

Class	Name	Symbol	Rest energy/MeV
photon	photon	γ	0
lepton	neutrino	$v_{ m e}$	0
		v_{μ}	0
	electron	e^{\pm}	0.510999
	muon	μ^{\pm}	105.659
mesons	π meson	π^{\pm}	139.576
		π^0	134.972
	K meson	K [±]	493.821
		K ⁰	497.762
baryons	proton	p	938.257
	neutron	n	939.551

Properties of quarks

antiquarks have opposite signs

Type	Charge	Baryon number	Strangeness
u	$+\frac{2}{3}e$	$+\frac{1}{3}$	0
d	$-\frac{1}{3}e$	$+\frac{1}{3}$	0
S	$-\frac{1}{3}e$	$+\frac{1}{3}$	- 1

Properties of Leptons

_		Lepton number
Particles:	e-, ν_e ; μ -, ν_μ	+ 1
Antiparticles:	$e^+, \overline{\nu_e}, \mu^+, \overline{\nu_\mu}$	- 1

Photons and energy levels

photon energy
$$E = hf = hc / \lambda$$

photoelectricity $hf = \phi + E_{k \text{ (max)}}$
energy levels $hf = E_1 - E_2$
de Broglie wavelength $\lambda = \frac{h}{p} = \frac{h}{mv}$

Waves

wave speed
$$c = f\lambda$$
 period $f = \frac{1}{T}$

first harmonic $f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$

fringe spacing $w = \frac{\lambda D}{s}$ diffraction grating $d\sin\theta = n\lambda$

refractive index of a substance s, $n = \frac{c}{c_s}$

for two different substances of refractive indices n_1 and n_2 , law of refraction $n_1 \sin \theta_1 = n_2 \sin \theta_2$ critical angle $\sin \theta_c = \frac{n_2}{n_1} \text{for } n_1 > n_2$

Mechanics

moments	moment = Fd	
velocity and acceleration	$v = \frac{\Delta s}{\Delta t}$	$a = \frac{\Delta v}{\Delta t}$
equations of motion	v = u + at	$s = \left(\frac{u+v}{2}\right) t$
	$v^2 = u^2 + 2as$	$s = ut + \frac{at^2}{2}$
force	F = ma	
force	$F = \frac{\Delta(mv)}{\Delta t}$	
impulse	$F \Delta t = \Delta(mv)$	
work, energy	$W = F s \cos \theta$	
and power	$E_{\rm k} = \frac{1}{2} m v^2$	$\Delta E_{\rm p} = mg\Delta h$
	$P = \frac{\Delta W}{\Delta t}, P = Fv$	
	$efficiency = \frac{usef}{i}$	ul output power
	i course	nnut nowar

Materials

density
$$\rho = \frac{m}{v}$$
 Hooke's law $F = k \Delta L$

Young modulus = $\frac{tensile\ stress}{tensile\ strain}$ $tensile\ stress = \frac{F}{A}$
 $tensile\ strain = \frac{\Delta L}{L}$

energy stored $E = \frac{1}{2}F\Delta L$

input power

Electricity

current and pd
$$I = \frac{\Delta Q}{\Delta t} \qquad V = \frac{W}{O} \qquad R = \frac{V}{I}$$

resistivity
$$\rho = \frac{RA}{L}$$

resistors in series
$$R_T = R_1 + R_2 + R_3 + \dots$$

resistors in parallel
$$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$

power
$$P = VI = I^2R = \frac{V^2}{R}$$

emf
$$\varepsilon = \frac{E}{Q} \qquad \varepsilon = I(R + r)$$

