Level 3 Certificate and Extended Certificate in Applied Science
KEY CONCEPTS IN SCIENCE

Unit Number: ASC1
Section B – ASC1/C (Chemistry)

Tuesday 23 January 2018 Morning
Time allowed: 1 hour 30 minutes
You are advised to spend approximately 30 minutes on this section.

Materials
For this paper you must have:
- a calculator
- Periodic Table
- formulae sheet.

Instructions
- Use black ink or black ball-point pen.
- Answer all questions in each section.
- You must answer the questions in the spaces provided.
- Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information
- You will be provided with a copy of the Periodic Table and formulae sheet.
- There are three sections in this paper:
 Section A – Biology Section B – Chemistry Section C – Physics.
- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60 and the maximum mark for this section is 20.

Advice
Read each question carefully.

For Examiner's Use
Examiner's Initials

<table>
<thead>
<tr>
<th>Question</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
</tbody>
</table>
Analytical chemists use indicators and pH curves to determine the end point of a titration. **Figure 1** shows titration curves for combinations of different acids and bases.

All solutions have the same concentration.
Select from A, B, C and D the curve produced by the addition of:

ethanoic acid (a weak acid) to 25 cm3 of sodium hydroxide ____________
ammonia solution (a weak base) to 25 cm3 of hydrochloric acid ____________
hydrochloric acid to 25 cm3 of sodium hydroxide ____________

Table 1 shows some acid–base indicators and the pH ranges over which they change colour.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>pH range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromophenol blue</td>
<td>3.0–4.6</td>
</tr>
<tr>
<td>Phenol red</td>
<td>6.8–8.2</td>
</tr>
<tr>
<td>Bromothymol blue</td>
<td>6.0–7.6</td>
</tr>
<tr>
<td>Thymolphthalein</td>
<td>9.3–10.5</td>
</tr>
</tbody>
</table>

State which indicator from Table 1 could be used in the titration that produces curve D but not in the titration that produces curve C.

Explain your choice.

Indicator
Explanation

Question 1 continues on the next page
An analytical chemist at a vinegar manufacturer used titration to monitor the concentration of ethanoic acid in vinegar.

The chemist:

- diluted 50.0 cm3 of the vinegar with distilled water to make a total volume of 500 cm3
- titrated a 25.0 cm3 sample against a standard solution of 0.100 mol dm$^{-3}$ NaOH.

$$\text{NaOH} + \text{CH}_3\text{COOH} \rightarrow \text{CH}_3\text{COONa} + \text{H}_2\text{O}$$

sodium hydroxide + ethanoic acid \rightarrow sodium ethanoate + water

The results are shown in Table 2.

Table 2

<table>
<thead>
<tr>
<th>Volume / cm3</th>
<th>Rough</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>At start</td>
<td>0.00</td>
<td>20.20</td>
<td>0.00</td>
<td>14.45</td>
</tr>
<tr>
<td>At end</td>
<td>20.20</td>
<td>39.40</td>
<td>14.45</td>
<td>33.55</td>
</tr>
<tr>
<td>Used</td>
<td>20.20</td>
<td>19.20</td>
<td>14.45</td>
<td>19.10</td>
</tr>
</tbody>
</table>

Calculate the average volume of sodium hydroxide used in the experiment. [1 mark]

Average volume = ____________________________ cm3

Calculate the number of moles of sodium hydroxide used in the experiment. Use your answer from Question 01.3. [1 mark]

Number of moles used = ____________________________
State the number of moles of ethanoic acid that reacted with the number of moles of sodium hydroxide in Question 01.4.

[1 mark]

__

__

Calculate the concentration of the **original** sample of ethanoic acid.

[2 marks]

Concentration = _______________________________ mol dm\(^{-3}\)

Turn over for the next question
Research chemists use trends in the properties of some elements to predict the properties of other elements.

Table 3 shows the values of atomic radii for the elements in Group 0 that the research chemist found.

Table 3

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>Atomic Radius /m x 10(^{-12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helium</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>Neon</td>
<td>10</td>
<td>58</td>
</tr>
<tr>
<td>Argon</td>
<td>18</td>
<td>106</td>
</tr>
<tr>
<td>Krypton</td>
<td>36</td>
<td>116</td>
</tr>
<tr>
<td>Xenon</td>
<td>54</td>
<td>140</td>
</tr>
<tr>
<td>Radon</td>
<td>86</td>
<td>150</td>
</tr>
</tbody>
</table>

Plot a graph of atomic radius against atomic number on Figure 2.

Draw a line of best fit.

[2 marks]
Identify the anomalous result. [1 mark]

Explain why atomic radius increases as atomic number increases in Group 0. [2 marks]
A large proportion of the elements of the Periodic Table are metals.

Aluminium is a metal widely used in the aerospace industry.

Give the electron configuration of an atom of aluminium, Al.

__
__

Describe the bonding in aluminium. Include a labelled diagram in your answer.

__
__
__
__
__
__

END OF QUESTIONS
There are no questions printed on this page
There are no questions printed on this page

DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED