Level 3 Certificate and Extended Certificate in Applied Science

KEY CONCEPTS IN SCIENCE

Unit Number: ASC1
Section C – ASC1/P (Physics)

Tuesday 23 January 2018 Morning Time allowed: 1 hour 30 minutes

You are advised to spend approximately 30 minutes on this section.

Materials
For this paper you must have:
- a calculator
- formulae sheet.

Instructions
- Use black ink or black ball-point pen.
- Answer all questions in each section.
- You must answer the questions in the spaces provided.
- Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information
- You will be provided with a copy of the formulae sheet.
- There are three sections in this paper:
 - Section A – Biology
 - Section B – Chemistry
 - Section C – Physics.
- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60 and the maximum mark for this section is 20.

Advice
Read each question carefully.
Power stations which use renewable energy resources produce around 25% of the United Kingdom’s electricity.

Table 1 shows different types of power station.

Tick (✓) all of the power stations in Table 1 which use renewable energy sources. [1 mark]

<table>
<thead>
<tr>
<th>Type of power station</th>
<th>Tick (✓)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td></td>
</tr>
<tr>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>Geothermal</td>
<td></td>
</tr>
<tr>
<td>Natural gas</td>
<td></td>
</tr>
<tr>
<td>Nuclear</td>
<td></td>
</tr>
<tr>
<td>Oil</td>
<td></td>
</tr>
<tr>
<td>Wave</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td></td>
</tr>
</tbody>
</table>

Hydroelectric power is another type of renewable energy.

Figure 1 shows a hydroelectric power station. The hydroelectric power station has a power output of 440 MW when water passes through it.

Water is supplied from a reservoir.
1.2 167 000 kg of water flow through the power station each second.

Calculate the loss of gravitational potential energy per second of the water as it flows from the reservoir to the power station.

Give an appropriate unit for your answer. Assume \(g = 9.8 \text{ ms}^{-2} \)

Loss of gravitational potential energy per second = ____________ Unit = ___________

[3 marks]

1.3 Calculate the efficiency of the hydroelectric power station.

Efficiency = _________________

[2 marks]

1.4 State two ways in which energy could be wasted in the hydroelectric power station.

1 __________________________

2 __________________________

[2 marks]

Question 1 continues on the next page
Nuclear power stations produce approximately 20% of the United Kingdom’s electricity.

Describe how electricity is generated in a nuclear power station. [4 marks]

__
__
__
__
__
__
__

State one disadvantage to the environment of using a nuclear power station to generate electricity. [1 mark]

__
A technician has set up four electrical circuits. She uses three identical 10 Ω resistors in each circuit. Figure 2 shows the arrangement of resistors in each circuit.

Figure 2

A

B

C

D

State which circuit, A, B, C or D, has the lowest total resistance and which has the highest total resistance.

Lowest total resistance _______________________

Highest total resistance _______________________

Question 2 continues on the next page
The technician uses **two** of the identical 10 Ω resistors in a circuit as shown in Figure 3.

Figure 3

12 V

Add a component to **Figure 3** which would allow the technician to measure the voltage across **one** of the resistors.

0 2 . 2

Calculate the reading on the ammeter in **Figure 3**.

0 2 . 3

Reading on ammeter = ________________ A

0 2 . 4

State what the expected voltage across each resistor should be.

0 2 . 4

Voltage = ________________ V
The technician measures the voltage across one of the resistors. The voltage is less than she expects it to be.

Give one reason why the voltage is lower than expected.

[1 mark]