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This question paper provided a suitable challenge for the most able, whilst also providing 

opportunities for weaker students.  There was no evidence of students running out of time.  

However, those who employed elaborate and time-consuming methods may have had less time to 

check their work after completing the paper.  Almost all students were able to make good progress 

with most of the questions, and some progress with the more demanding questions.  It was evident 

that most students had a good understanding of at least the basics of each topic.  However, 

particularly in questions 13 and 14, a number of students were let down by poor presentation, in 

the form of reduced legibility and unhelpful diagrams,. 

 

This question was answered very well, with almost all students selecting the correct answer of 10. 

 

The vast majority of students selected the correct answer of AC.  The most common incorrect 

choice was AB. 

 

The answer of cos x was correctly chosen by most students, with the wrong choices evenly 

distributed amongst the other three options. 

 

Many students struggled with this graph sketch, failing to notice that a rearrangement of the 

equation produces  r cos  = a  and hence x = a, which is a vertical line through (a, 0).  Many 

students plotted some points — which rarely produced the correct answer — whilst others 

sketched a seemingly random curve, a cardioid being the most popular choice. 

 

Most students realised that the given matrix was a rotation, although some struggled to describe it 

adequately.  It was evident that the general matrix provided in the formulae book had been used by 

almost all students, but a common error was to solve only one of the trigonometric equations.  A 

rotation of 60° from sin–1(
√3

2
) was not uncommon.  However, the majority of students answered this 

question well. 

 

Many students failed to identify the error in the algebraic steps given in part (a).  Of those who 

realised that ± was not acceptable, only half could explain why.  A significant number of students 

suggested that completing the square was an invalid approach.  Many others questioned the 

swapping of the variables x and y, with some explaining that variables could not be swapped.  

Some students decided that the variables had been swapped at the wrong point in the solution. 
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When answering part (b), many students failed to notice the connection with part (a).  Of those who 

did spot the link, some decided that  x was equal to sinh–1 3 instead of sinh 3.  However, a number 

of students were able to solve the equation by algebraic means, and the correct answer sometimes 

followed several lines of skilful algebra. 

 

The vast majority of students realised that M[
x

y
] = [

x

y
], and were able to multiply out to produce 

two equivalent equations.  However, a significant number of these students were unable to use 

their equation(s) to find an invariant point.  Many chose to solve them as simultaneous equations, 

and either made an error or confused themselves when every term cancelled out.  A minority of 

students knew that (0, 0) would be invariant and gave this as the only possible point. 

 

This question was well answered with almost every student identifying the complex conjugate as a 

root of the equation.  The methods for finding the third root were many and varied, as were the 

methods for finding the value of m.  However, the majority of attempts were successful.  Some 

students opted to find the three factors, expand the brackets and then compare coefficients.  

Although this is a perfectly valid method, it was quite time consuming, and prone to error. 

 

A few students found m  whilst calculating the third root.  Many of these then wasted time in 

rewriting their method in part (b).  Some of the less successful attempts confused factors with 

roots. 

 

Most students drew a correct sketch of the curve, although some drew only the top half. 

 

In part (b), the majority of students used centimetres and produced a bowl with sensible 

dimensions.  This question was generally well answered, although a significant minority of students 

initially included , but then lost it during their calculations. 

 

In part (c), many students gave a sensible assumption, usually referring to the thickness of the 

material used.  Some incorrect responses questioned the capabilities of 3-D printers. 

 

The vast majority of students clearly knew how to structure a proof by induction, but only a third of 

the students could produce a fully correct proof.  Almost all attempts included a confirmation of the 

initial case of n = 1, and many of these then assumed the identity was true for n = k.  Good 

students were able to successfully manipulate this equation into a form which satisfied the  

n = k + 1 case.  Some of these, however, resorted to expanding their quartic expression and then 

demonstrating that it was equivalent to the required quartic.  Although an acceptable method, this 

was a time consuming approach, and prone to error.  However, those who succeeded in this 

usually went on to produce a satisfactory proof by induction, although a minority demonstrated a 

lack of understanding of the requirements of a proof by induction. 
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The majority of students were able to make some progress in part (b), correctly substituting 2n into 

the appropriate formulae, but some of these then struggled with the algebra.  Again, a minority of 

students opted to expand their quartic, instead of factorising, but then errors often crept in. 

 

Only a minority of students realised that this question was asking for the mean value.  A common 

approach was to translate the graph k units downwards and then solve ∫ f(x)= 0
4

1
.  It was not 

uncommon for students to assume that the intersection with  y = k  occurred at  x = 2.5.  However, 

it was possible to use the unknown intersection point and solve ∫ y dx = − ∫ y dx
p

1

4

p
.  Unfortunately, 

many students who attempted this method struggled with the subsequent algebra. 

 

The majority of students were able to calculate the determinant and show that it was equal to zero.  

However, a significant minority failed to make a conclusion after a correct calculation. 

 

In part (b), most students were able to set up a correct inequality, although some wasted time 

searching for a root, having missed the connection with part (a).  Those students who found the 

correct critical values, generally went on to identify the correct regions. 

 

In part (a), most students could write a function with at least one of the required asymptotes.  

Those students who found a function which satisfied all of the necessary criteria generally went for 

the straightforward rectangular hyperbola. 

 

Most students were able to draw a suitable graph in part (b), although some sketches failed to 

show a correct approach to the asymptotes. 

 

In part (c), many students found a correct intersection with y = 5, but a significant number failed to 

successfully progress further. 

 

 

Part (a) was well answered, although most circles were drawn freehand.  However, an accurately 

drawn circle made both (b)(i) and (b)(ii) easier to solve. 

 

Most students realised that the required line was a tangent to the circle, but many of these failed to 

realise that a simple sine ratio could be used to find the angle 𝛼. 

 

Part (b)(ii) was only answered well by only the most able students.  Although most of the 

successful attempts used basic GCSE trigonometry, some elaborate methods were also employed, 

including the solution of quadratic simultaneous equations.  A common error was to assume that 

the triangle with vertices 0, 3 and w was right-angled.  Another common mistake was to assume 

that 𝜃 and 𝛼 were equal. 
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Part (a) was well answered.  A common error, however, was the incorrect use of brackets or 

missing brackets, for example r + 3 – r + 2 = 1. 

 

Part (b) was also well answered.  Many of those who failed to successfully prove the required 

identity wrote the list of differences beyond r = n. 

 

Only half of the students were able to make satisfactory progress with this question.  Most of the 

successful attempts substituted [
a b

c d
] (or equivalent) for A, and then solved the resulting 

simultaneous equations.  Only the most able students were able to successfully isolate A or A–1 by 

rearranging the given matrix equation. 

 

Most successful attempts at question 17 came from using the definitions of sinh and cosh, and 

then solving the resulting exponential equation.  Some weaker students struggled to simplify their 

exponential equation, resulting in a page of algebra which was rarely successful.  Those students 

who swapped sinh  + cosh   for e  produced very short and efficient solutions. 

 

Only the most able students were able to make progress with this question.  Of these, there were 

some very good solutions which clearly explained why the expression had to be non-negative.  

Most students indicated that –m was equal to the sum of the roots, and that n was equal to the sum 

of the product pairs, but few were able to use these, along with the roots equation 

 ∑ 𝛼2 = (∑ 𝛼)2 − 2∑ 𝛼𝛽, to make progress.  Many attempts were simply abandoned halfway. 

 

Almost all students correctly found the direction vectors, and most of these went on to write a 

vector equation for each of the two lines.  Only the most able students were able to progress 

further, usually reducing the numbers involved to a more manageable size.  The most common 

method was to find the two points which are closest and then find the distance between them.  An 

alternative, but less popular, method found the scalar product of a unitised perpendicular vector 

with a vector between the two lines.  Common errors included the assumption that the two lines 

were perpendicular to each other.  The most common error in good attempts involved incorrect 

subtraction of negative values. 

 

In part (b), the most common correct refinement of the model suggested that the lines should be 

treated as curves.  Some were unable to gain credit as they did not express their answer as a 

refinement of the model. 
 
 

Mark Ranges and Award of Grades 
 
Grade boundaries and cumulative percentage grades are available on the Results Statistics 

page of the AQA Website. 
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