Thursday 7 June 2018 Morning Time allowed: 2 hours

Materials
For this paper you must have:
• a ruler with millimetre measurements
• a scientific calculator.

Instructions
• Use black ink or black ball-point pen.
• Fill in the boxes at the top of this page.
• Answer all questions.
• You must answer the questions in the space provided. Do not write outside the box around each page or on blank pages.
• Show all your working.
• Do all rough work in this book. Cross through any work you do not want to be marked.

Information
• The marks for the questions are shown in brackets.
• The maximum mark for this paper is 91.
Figure 1 shows all the chromosomes present in one human cell during mitosis. A scientist stained and photographed the chromosomes. In Figure 2, the scientist has arranged the images of these chromosomes in homologous pairs.

0 1. Give two pieces of evidence from Figure 1 that this cell was undergoing mitosis. Explain your answers.

[2 marks]

1. __
 __
 __
 __
 __

2. __
 __
 __
 __
 __
01.2 Tick (✓) one box that gives the name of the stage of mitosis shown in Figure 1. [1 mark]

Anaphase
Interphase
Prophase
Telophase

01.3 When preparing the cells for observation the scientist placed them in a solution that had a slightly higher (less negative) water potential than the cytoplasm. This did not cause the cells to burst but moved the chromosomes further apart in order to reduce the overlapping of the chromosomes when observed with an optical microscope.

Suggest how this procedure moved the chromosomes apart. [2 marks]

Question 1 continues on the next page
The dark stain used on the chromosomes binds more to some areas of the chromosomes than others, giving the chromosomes a striped appearance.

Suggest one way the structure of the chromosome could differ along its length to result in the stain binding more in some areas. [1 mark]

In Figure 2 the chromosomes are arranged in homologous pairs. What is a homologous pair of chromosomes? [1 mark]

Give two ways in which the arrangement of prokaryotic DNA is different from the arrangement of the human DNA in Figure 1. [2 marks]

1.

2.
There are no questions printed on this page

Turn over for the next question
A student investigated the effect of surface area on osmosis in cubes of potato.

- He cut two cubes of potato tissue, each with sides of 35 mm in length.
- He put one cube into a concentrated sucrose solution.
- He cut the other cube into eight equal-sized smaller cubes and put them into a sucrose solution of the same concentration as the solution used for the large cube.
- He recorded the masses of the cubes at intervals.

His results are shown in Figure 3.
Describe the method the student would have used to obtain the results in Figure 3. Start after all of the cubes of potato have been cut. Also consider variables he should have controlled.

[3 marks]

__

__

__

__

__

[Extra space] __

__

__

Question 2 continues on the next page
The loss in mass shown in Figure 3 is due to osmosis. The rate of osmosis between 0 and 40 minutes is faster in B (the eight small cubes) than in A (single large cube).

Is the rate of osmosis per mm2 per minute different between A and B during this time? Use appropriate calculations to support your answer. [3 marks]
There are no questions printed on this page

Turn over for the next question
Bees are flying insects that feed on nectar made in flowers. There are many different species of bee.

Scientists investigated how biodiversity of bees varied in three different habitats during a year. They collected bees from eight sites of each habitat four times per year for three years.

The scientists' results are shown in Figure 4 in the form they presented them.

Figure 4

![Graph showing mean number of bees collected and mean bee species richness over the year for three habitats: Natural, Town, and Farmland.]

Key to habitats
- Natural
- Town
- Farmland

0.3.1 What is meant by ‘species richness’?

[1 mark]
From the data in Figure 4, a student made the following conclusions.

1. The natural habitat is most favourable for bees.
2. The town is the least favourable for bees.

Do the data in Figure 4 support these conclusions? Explain your answer. [4 marks]

1. The natural habitat is most favourable for bees.

__
__
__
__
__
__

2. The town is the least favourable for bees.

__
__
__
__
__
__
The scientists collected bees using a method that was ethical and allowed them to identify accurately the species to which each belonged.

In each case, suggest one consideration the scientists had taken into account to make sure their method [2 marks]

1. was ethical. __
 __
 __
 __
 __

2. allowed them to identify accurately the species to which each belonged. __
 __
 __
 __
 __
Suggest and explain two ways in which the scientists could have improved the method used for data collection in this investigation. [2 marks]

1.

2.

Question 3 continues on the next page
Three of the bee species collected in the farmland areas were *Peponapis pruinosa*, *Andrena chlorogaster* and *Andrena piperi*.

What do these names suggest about the evolutionary relationships between these bee species? Explain your answer.

[2 marks]
04.1 Formation of an enzyme-substrate complex increases the rate of reaction. Explain how. [2 marks]

04.2 A scientist measured the rate of removal of amino acids from a polypeptide with and without an enzyme present. With the enzyme present, 578 amino acids were released per second. Without the enzyme, 3.0×10^{-9} amino acids were released per second.

Calculate by how many times the rate of reaction is greater with the enzyme present. Give your answer in standard form. [2 marks]

Answer = ________________ times faster
Another scientist investigated an enzyme that catalyses the following reaction.

\[\text{ATP} \rightarrow \text{ADP} + \text{Pi} \]

The scientists set up two experiments, C and L.

Experiment C used
- the enzyme
- different concentrations of ATP.

Experiment L used
- the enzyme
- different concentrations of ATP
- a sugar called lyxose.

The scientists measured the rate of reaction in each experiment. Their results are shown in Figure 5.

![Figure 5](image-url)
04 3 Calculate the rate of reaction of the enzyme activity with no lyxose at 2.5 mmol dm\(^{-3}\) of ATP as a percentage of the maximum rate shown with lyxose.

[2 marks]

Answer = _____________________ %

Question 4 continues on the next page
Lyxose binds to the enzyme.

Suggest a reason for the difference in the results shown in Figure 5 with and without lyxose.

[3 marks]
There are no questions printed on this page

Turn over for the next question
05.1 Draw the general structure of an amino acid.

[1 mark]

Table 1 shows mRNA codons and the amino acids coded for by each codon. It also shows some properties of the R group of each amino acid.

<table>
<thead>
<tr>
<th>1st base</th>
<th>2nd base</th>
<th>3rd base</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>U</td>
<td>Phe</td>
<td>Tyr</td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
<td>Stop</td>
</tr>
<tr>
<td>G</td>
<td>Trp</td>
<td>A</td>
</tr>
<tr>
<td>G</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Leu</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td>His</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Ile</td>
<td>Asn</td>
</tr>
<tr>
<td>Met</td>
<td>Thr</td>
<td>Lys</td>
</tr>
<tr>
<td>G</td>
<td>Val</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td>Asp</td>
<td>Glu</td>
</tr>
</tbody>
</table>

Key to the properties of the R group of each amino acid

- Dark grey: No overall charge
- Light grey: Positively charged
- Medium grey: Negatively charged
The genetic code is described as degenerate.

What is meant by this? Use an example from Table 1 to illustrate your answer.

[2 marks]

Question 5 continues on the next page
A scientist investigated changes in the amino acid sequence of a human enzyme resulting from mutations. All these amino acid changes result from single base substitution mutations. This enzyme is a polypeptide 465 amino acids long.

Table 2 shows the result of three of the base substitutions.

<table>
<thead>
<tr>
<th>Amino acid number</th>
<th>Correct amino acid</th>
<th>Amino acid inserted as a result of mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>203</td>
<td>Val</td>
<td>Ala</td>
</tr>
<tr>
<td>279</td>
<td>Glu</td>
<td>Lys</td>
</tr>
<tr>
<td>300</td>
<td>Glu</td>
<td>Lys</td>
</tr>
</tbody>
</table>

What is the minimum number of bases in the gene coding for this polypeptide?

[1 mark]

Answer = __________________________
05.4 Use information from **Table 1** to tick (✓) **one** box that shows a single base substitution mutation in **DNA** that would result in a change from **Val** to **Ala** at amino acid number 203.

- CAA → CGA
- GUU → GCA
- GUU → GUC
- CAC → CGG

[1 mark]

05.5 A change from **Glu** to **Lys** at amino acid 300 had no effect on the rate of reaction catalysed by the enzyme. The same change at amino acid 279 significantly reduced the rate of reaction catalysed by the enzyme.

Use all the information and your knowledge of protein structure to suggest reasons for the differences between the effects of these two changes.

[3 marks]

__

__

__

__

__

__

__

[Extra space] __

__

__

__

__
Figure 6 shows a faulty form of meiosis that can occur in some plants.

Figure 6

Chromosome content of a diploid parent cell

1st division of meiosis

Chromosome content after 1st division

2nd division of meiosis

Two daughter cells do not develop

Diploid (2n)

Chromosome content of the two daughter cells that develop as gametes
06.1 Complete Figure 7 to show the chromosome content of the cells that would result from a normal meiotic division of the diploid parent cell shown in Figure 6.

[2 marks]

Figure 7

Chromosome content after 1st division of meiosis

2nd division of meiosis

Chromosome content of the four daughter cells

Question 6 continues on the next page
If two diploid (2n) gametes fuse at fertilisation, it can result in the growth of a tetraploid plant which has 4 copies of each chromosome. Red clover is a plant grown to produce cattle feed. Tetraploid red clover plants produce a higher yield than diploid red clover plants. Whether a red clover plant produces 2n gametes is genetically controlled.

Scientists investigated the possibility of breeding red clover plants that only produced 2n gametes.

- In breeding cycle 0, they grew red clover plants and identified plants that produced 2n gametes.
- In breeding cycle 1, they used the plants producing 2n gametes to produce offspring.
- In breeding cycles 2 and 3, they identified plants producing 2n gametes and used these to produce offspring.

Their results are shown in Table 3.

<table>
<thead>
<tr>
<th>Breeding cycle</th>
<th>Observed</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of plants that did not produce 2n gametes</td>
<td>Number of plants that did produce 2n gametes</td>
</tr>
<tr>
<td>0</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>56</td>
</tr>
</tbody>
</table>

The scientists used the following null hypothesis.

'The proportion of plants that produce 2n gametes will not change from one breeding cycle to the next.'

Complete Table 3 to show the expected number of plants that did not produce 2n gametes and the expected number of plants that did produce 2n gametes after 1 cycle.

Give each answer to the nearest whole number. [2 marks]
The scientists tested their null hypothesis using the chi-squared statistical test. After 1 cycle their calculated chi-squared value was 350. The critical value at \(P = 0.05 \) is 3.841.

What does this result suggest about the difference between the observed and expected results and what can the scientists therefore conclude?

[2 marks]

Use your knowledge of directional selection to explain the results shown in Table 3.

[3 marks]
When a person is bitten by a venomous snake, the snake injects a toxin into the person. Antivenom is injected as treatment. Antivenom contains antibodies against the snake toxin. This treatment is an example of passive immunity.

Explain how the treatment with antivenom works and why it is essential to use passive immunity, rather than active immunity. [2 marks]
Figure 8 shows a procedure used to produce antivenom.

Figure 8

Capture of snakes of one species

Collection of venom

Preparation of venom mixtures

Preparation of venoms for use as vaccine

Selection of animals

Quarantine and observation by a vet

Vaccination of animal

Collection of animal blood

Ongoing observation by a vet

Purification of antibodies from the animal blood plasma

A mixture of venoms from several snakes of the same species is used.

Suggest why.

[2 marks]
07.3 Horses or rabbits can be used to produce antivenoms.
When taking blood to extract antibody, 13 cm3 of blood is collected per kg of the animal's body mass.
The mean mass of the horses used is 350 kg and the mean mass of the rabbits used is 2 kg.

Using only this information, suggest which animal would be better for the production of antivenoms.
Use a calculation to support your answer.

[2 marks]

07.4 During the procedure shown in Figure 8 the animals are under ongoing observation by a vet.

Suggest one reason why.

[1 mark]
During vaccination, each animal is initially injected with a small volume of venom. Two weeks later, it is injected with a larger volume of venom.

Use your knowledge of the humoral immune response to explain this vaccination programme.

[3 marks]
Scientists investigated the effect of a heat treatment on mass transport in barley plants.

- They applied steam to one short section of a leaf of the heat-treated plants. This area is shown by the arrows in Figure 9.
- They did not apply steam to the leaves of control plants.
- They then supplied carbon dioxide containing radioactively-labelled carbon to each plant in the area shown by the rectangular boxes in Figure 9.
- After 4 hours, they:
 - found the position of the radioactively-labelled carbon in each plant. These results are shown in Figure 9.
 - recorded the water content of the parts of the leaf that were supplied with radioactively-labelled carbon dioxide. These results are shown in Table 4.

Figure 9

A – Heat-treated Plant

![0 hours](image1.png) ![4 hours](image2.png)

B – Control Plant, not heat treated

![0 hours](image3.png) ![4 hours](image4.png)

Table 4

<table>
<thead>
<tr>
<th>Plant from which the leaf was taken</th>
<th>Water content of leaf / % of maximum (± 2 standard deviations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat-treated Plant A</td>
<td>84.6 (±11.3)</td>
</tr>
<tr>
<td>Control Plant, not heat treated B</td>
<td>92.8 (±8.6)</td>
</tr>
</tbody>
</table>
The scientists concluded that this heat treatment damaged the phloem.

Explain how the results in **Figure 9** support this conclusion. [2 marks]

The scientists also concluded that this heat treatment did not affect the xylem.

Explain how the results in **Table 4** support this conclusion. [2 marks]
The scientists then investigated the movement of iron ions (Fe\(^{3+}\)) from the soil to old and young leaves of heat-treated barley plants and to leaves of plants that were not heat treated. Heat treatment was applied half way up the leaves. The scientists determined the concentration of Fe\(^{3+}\) in the top and lower halves of the leaves of each plant.

Their results are shown in **Figure 10**.

Figure 10

![Bar graph showing the ratio of Fe\(^{3+}\) concentration in the top half of leaves to the concentration in the lower half of leaves, comparing old and young leaves under heat treatment and untreated conditions.](chart.png)
What can you conclude about the movement of Fe$^{3+}$ in barley plants? Use all the information provided.

[4 marks]
Describe the role of two named enzymes in the process of semi-conservative replication of DNA.

[3 marks]
Scientists investigated the function of a eukaryotic cell protein called cyclin A. This protein is thought to be involved with the binding of one of the enzymes required at the start of DNA replication.

The scientists treated cultures of cells in the following ways.

C – Control cells, untreated
D – Added antibody that binds specifically to cyclin A
E – Added RNA that prevents translation of cyclin A
F – Added RNA that prevents translation of cyclin A and added cyclin A protein

They then determined the percentage of cells in each culture in which DNA was replicating.

Their results are shown in Table 5.

Table 5

<table>
<thead>
<tr>
<th>Cell treatment</th>
<th>Percentage of cells where DNA was replicating</th>
</tr>
</thead>
<tbody>
<tr>
<td>C Control</td>
<td>91</td>
</tr>
<tr>
<td>D Antibody that binds specifically to cyclin A</td>
<td>11</td>
</tr>
<tr>
<td>E RNA that prevents translation of cyclin A</td>
<td>10</td>
</tr>
<tr>
<td>F RNA that prevents translation of cyclin A and added cyclin A protein</td>
<td>92</td>
</tr>
</tbody>
</table>
Suggest explanations for the results in Table 5.

[3 marks]
Describe the gross structure of the human gas exchange system and how we breathe in and out.

[6 marks]
Mucus produced by epithelial cells in the human gas exchange system contains triglycerides and phospholipids.

Compare and contrast the structure and properties of triglycerides and phospholipids. [5 marks]
Mucus also contains glycoproteins. One of these glycoproteins is a polypeptide with the sugar, lactose, attached.

Describe how lactose is formed and where in the cell it would be attached to a polypeptide to form a glycoprotein.

[4 marks]

END OF QUESTIONS
There are no questions printed on this page