<table>
<thead>
<tr>
<th></th>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(p = h \rho g)</td>
<td>Pressure due to a column of liquid = height of column (\times) density of liquid (\times) gravitational field strength (g)</td>
</tr>
<tr>
<td>2</td>
<td>(v^2 - u^2 = 2a \Delta s)</td>
<td>(final velocity)(^2) – (initial velocity)(^2) = 2 \times) acceleration (\times) distance</td>
</tr>
<tr>
<td>3</td>
<td>(F = \frac{m \Delta v}{\Delta t})</td>
<td>Force = (\frac{\text{change in momentum}}{\text{time taken}})</td>
</tr>
<tr>
<td>4</td>
<td>(E_e = \frac{1}{2} k e^2)</td>
<td>Elastic potential energy = (0.5 \times) spring constant (\times) (extension)(^2)</td>
</tr>
<tr>
<td>5</td>
<td>(\Delta E = m c \Delta \theta)</td>
<td>Change in thermal energy = (\text{mass} \times) specific heat capacity (\times) temperature change</td>
</tr>
<tr>
<td>6</td>
<td>(T = \frac{1}{f})</td>
<td>Period = (\frac{1}{\text{frequency}})</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Magnification = (\frac{\text{image height}}{\text{object height}})</td>
</tr>
<tr>
<td>8</td>
<td>(F = B I l)</td>
<td>Force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density (\times) current (\times) length</td>
</tr>
<tr>
<td>9</td>
<td>(E = m L)</td>
<td>Thermal energy for a change of state = (\text{mass} \times) specific latent heat</td>
</tr>
<tr>
<td>10</td>
<td>(\frac{V_p}{V_s} = \frac{n_p}{n_s})</td>
<td>Potential difference across primary coil = (\frac{\text{number of turns in primary coil}}{\text{number of turns in secondary coil}})</td>
</tr>
<tr>
<td>11</td>
<td>(V_p I_p = V_s I_s)</td>
<td>Potential difference across primary coil (\times) current in primary coil = potential difference across secondary coil (\times) current in secondary coil</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>For gases: pressure (\times) volume = constant</td>
</tr>
</tbody>
</table>

Higher Tier only equations are in bold.