Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students’ responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students’ scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark schemes on the basis of one year’s document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk
Information to Examiners

1. General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- the typical answer or answers which are expected
- extra information to help the Examiner make his or her judgement
- the Assessment Objectives and specification content that each question is intended to cover.

The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and should only be applied to that item in the mark scheme.

At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.

In general the right-hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent.

2. Emboldening and underlining

2.1 In a list of acceptable answers where more than one mark is available ‘any two from’ is used, with the number of marks emboldened. Each of the following bullet points is a potential mark.

2.2 A bold and is used to indicate that both parts of the answer are required to award the mark.

2.3 Alternative answers acceptable for a mark are indicated by the use of or. Different terms in the mark scheme are shown by a / ; eg allow smooth / free movement.

2.4 Any wording that is underlined is essential for the marking point to be awarded.
3. Marking points

3.1 Marking of lists

This applies to questions requiring a set number of responses, but for which students have provided extra responses. The general principle to be followed in such a situation is that ‘right + wrong = wrong’.

Each error / contradiction negates each correct response. So, if the number of errors / contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.

However, responses considered to be neutral (indicated as * in example 1) are not penalised.

Example 1: What is the pH of an acidic solution?

<table>
<thead>
<tr>
<th>Student</th>
<th>Response</th>
<th>Marks awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>green, 5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>red*, 5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>red*, 8</td>
<td>0</td>
</tr>
</tbody>
</table>

Example 2: Name two planets in the solar system.

<table>
<thead>
<tr>
<th>Student</th>
<th>Response</th>
<th>Marks awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neptune, Mars, Moon</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Neptune, Sun, Mars, Moon</td>
<td>0</td>
</tr>
</tbody>
</table>

3.2 Use of chemical symbols / formulae

If a student writes a chemical symbol / formula instead of a required chemical name, full credit can be given if the symbol / formula is correct and if, in the context of the question, such action is appropriate.

3.3 Marking procedure for calculations

Marks should be awarded for each stage of the calculation completed correctly, as students are instructed to show their working. Full marks can, however, be given for a correct numerical answer, without any working shown.

3.4 Interpretation of ‘it’

Answers using the word ‘it’ should be given credit only if it is clear that the ‘it’ refers to the correct subject.
3.5 **Errors carried forward**

Any error in the answers to a structured question should be penalised once only.

Papers should be constructed in such a way that the number of times errors can be carried forward is kept to a minimum. Allowances for errors carried forward are most likely to be restricted to calculation questions and should be shown by the abbreviation ecf in the marking scheme.

3.6 **Phonetic spelling**

The phonetic spelling of correct scientific terminology should be credited **unless** there is a possible confusion with another technical term.

3.7 **Brackets**

(.....) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

3.8 **Allow**

In the mark scheme additional information, ‘allow’ is used to indicate creditworthy alternative answers.

3.9 **Ignore**

Ignore is used when the information given is irrelevant to the question or not enough to gain the marking point. Any further correct amplification could gain the marking point.

3.10 **Do not accept**

Do **not** accept means that this is a wrong answer which, even if the correct answer is given as well, will still mean that the mark is not awarded.

4. **Level of response marking instructions**

Extended response questions are marked on level of response mark schemes.

- Level of response mark schemes are broken down into levels, each of which has a descriptor.
- The descriptor for the level shows the average performance for the level.
- There are two marks in each level.

Before you apply the mark scheme to a student’s answer, read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.
Step 1: Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer.

When assigning a level you should look at the overall quality of the answer. Do not look to penalise small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level.

Use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 2 with a small amount of level 3 material it would be placed in level 2 but be awarded a mark near the top of the level because of the level 3 content.

Step 2: Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this.

The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the indicative content to reach the highest level of the mark scheme.

You should ignore any irrelevant points made. However, full marks can be awarded only if there are no incorrect statements that contradict a correct response.

An answer which contains nothing of relevance to the question must be awarded no marks.
<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Extra information</th>
<th>Mark</th>
<th>AO / Spec. Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.1</td>
<td>uniform acceleration</td>
<td>allow constant / steady acceleration allow velocity / speed increasing at a constant rate ignore reference to direction acceleration scores 1 mark or velocity / speed is increasing scores 1 mark do not accept acceleration increases</td>
<td>2</td>
<td>AO1 4.5.6.1.5</td>
</tr>
<tr>
<td>01.2</td>
<td>up(wards)</td>
<td></td>
<td>1</td>
<td>AO1 4.5.6.1.5</td>
</tr>
<tr>
<td>01.3</td>
<td>a group of objects that interact</td>
<td></td>
<td>1</td>
<td>AO1 4.1.1.1</td>
</tr>
<tr>
<td>01.4</td>
<td>velocity just after bounce is less than just before bounce or the height at the top of the bounce is less than the height from which it was dropped so the ball has lost energy correct reference to (loss of) ke or (reduced) gpe total energy of ball and Earth / ground is constant</td>
<td>allow velocity is less / decreases allow speed for velocity velocity decreases to zero – on its own scores zero allow ‘a system’ for ball and Earth allow energy is conserved</td>
<td>1</td>
<td>AO3 4.5.6.1.5 AO1 4.1.1.2 AO1 4.1.2.1 AO1 4.1.2.1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Question 02.1

Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

- **Mark:** 5–6
- **AO/Spec. Ref:** AO1 4.5.3

Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.

- **Mark:** 3–4

Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

- **Mark:** 1–2

No relevant content

- **Mark:** 0

Indicative content

- Set up a clamp stand with a clamp
- Hang the spring from the clamp
- Use a second clamp and boss to fix a (half) metre ruler alongside the spring
- Record the metre ruler reading that is level with the bottom of the spring
- Hang a 2 N weight from the bottom of the spring
- Record the new position of the bottom of the spring
- Calculate the extension of the spring
- Measure the extension of the spring
- Add further weights to the spring so the force increases 2 N at a time up to 10 N
- For each new force record the position of the bottom of the spring and calculate/measure the extension

Possible source of inaccuracy

- Not fixing the ruler in position but simply holding the ruler next to the spring
- Not clamping the ruler vertical
- Misjudging the position of the bottom of the spring
- Parallax error
- Allow any other sensible suggestion that could reasonably lead to inaccuracy in the data
- Allow a description that would increase accuracy
- Repeating the measurements is insufficient
<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Extra information</th>
<th>Mark</th>
<th>AO / Spec. Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.2</td>
<td>to identify any anomalous results or to reduce the effect of random error</td>
<td>allow calculate an average for the spring constant allow (more) accurate to obtain an average is insufficient to be able to draw a graph is insufficient</td>
<td>1</td>
<td>AO3 4.5.3</td>
</tr>
<tr>
<td>02.3</td>
<td>both points plotted correctly correct line of best fit drawn</td>
<td>to pass through (0,0) and (10,20)</td>
<td>1</td>
<td>AO2 4.5.3</td>
</tr>
<tr>
<td>02.4</td>
<td>force = spring constant × extension</td>
<td>allow F = ke</td>
<td>1</td>
<td>AO1 4.5.3</td>
</tr>
<tr>
<td>02.5</td>
<td>extension = 0.2 10 = k × 0.2</td>
<td>an answer of 50 scores 4 marks allow 0.035 / 0.08 / 0.125 / 0.16 force value must match extension this mark may be awarded if e is in cm allow correct transformation of their chosen values this mark may be awarded if e is in cm</td>
<td>1</td>
<td>AO2</td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>02.6</td>
<td>the line is straight and passes through the origin</td>
<td>allow the line does not curve this mark is dependent on scoring the first mark allow a correct description of direct proportionality for 2 marks ignore the line shows they are directly proportional</td>
<td>1 1</td>
<td>AO3 4.5.3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>03.1</td>
<td>P-waves are longitudinal and S-waves are transverse</td>
<td></td>
<td>1</td>
<td>AO1 4.6.1.5</td>
</tr>
<tr>
<td>03.2</td>
<td>0.4</td>
<td></td>
<td>1</td>
<td>AO2 4.6.1.2</td>
</tr>
<tr>
<td>03.3</td>
<td>wave speed = frequency × wavelength</td>
<td>allow $v = f \lambda$</td>
<td>1</td>
<td>AO1 4.6.1.2</td>
</tr>
<tr>
<td>03.4</td>
<td>$7200 = 0.4 \times$ wavelength</td>
<td>an answer $18\ 000$ scores 3 marks</td>
<td>1</td>
<td>AO2 4.6.1.2</td>
</tr>
<tr>
<td></td>
<td>wavelength = $\frac{7200}{0.4}$</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>wavelength = 18 000 (m)</td>
<td>allow up to full marks for ecf using their answer to question 03.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>because S-waves cannot travel through a liquid and S-waves do not travel through the (outer) core</td>
<td>allow some (seismic) waves cannot travel through a liquid and do not go through the core for 1 mark</td>
<td>1</td>
<td>AO1 4.6.1.5</td>
</tr>
<tr>
<td>03.6</td>
<td>magnetic field around the coil changes or the magnetic field (lines) cut by the coil</td>
<td>allow the generator effect</td>
<td>1</td>
<td>4.7.3.1 AO2</td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>03.7</td>
<td>because the magnet changes direction</td>
<td></td>
<td>1</td>
<td>4.7.3.1 AO2</td>
</tr>
<tr>
<td>03.8</td>
<td>stationary</td>
<td></td>
<td>1</td>
<td>4.7.3.1 AO2</td>
</tr>
</tbody>
</table>
| 03.9 | any two from:
• stronger magnetic field
• more turns on the coil
• turns pushed closer together
• spring with a lower spring constant | allow stronger magnet
allow heavier magnet
bigger magnet is insufficient
bigger coil is insufficient
do not accept more coils of wire
allow less stiff spring
allow weaker spring
do not accept add an iron core | 2 | 4.7.3.1 AO2 |
<p>| Total | | | 13 | |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Extra information</th>
<th>Mark</th>
<th>AO / Spec. Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.1</td>
<td>all heights drawn the same as tube 1</td>
<td>judge by eye</td>
<td>1</td>
<td>AO2 4.5.5.1.2</td>
</tr>
<tr>
<td>04.2</td>
<td>increasing depth increases the height / mass / volume (of the water column) above the swimmer; increasing the weight / force (of water) acting on the swimmer</td>
<td>allow more water above (the swimmer); more water is insufficient</td>
<td>1</td>
<td>AO1 4.5.5.1.2</td>
</tr>
<tr>
<td>04.3</td>
<td>increase in depth = 1.2 (m)</td>
<td>an answer of 12 112.8 scores 3 marks</td>
<td>1</td>
<td>AO2 4.5.5.1.2</td>
</tr>
<tr>
<td></td>
<td>((\Delta) p = 1.2 \times 1030 \times 9.8)</td>
<td>allow either 0.50 or 1.70 for 1.2</td>
<td>1</td>
<td>AO2 4.5.5.1.2</td>
</tr>
<tr>
<td></td>
<td>((\Delta) p = 12112.8)</td>
<td>allow a correctly rounded answer; allow a correct calculation using either 0.50 or 1.70</td>
<td>1</td>
<td>AO2 4.5.5.1.2</td>
</tr>
<tr>
<td></td>
<td>pascals or Pa</td>
<td>do not accept pa; allow N/m²</td>
<td>1</td>
<td>AO1 4.5.5.1.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>05.1</td>
<td>random</td>
<td>human error is insufficient</td>
<td>1</td>
<td>AO3 4.6.1.3</td>
</tr>
<tr>
<td>05.2</td>
<td>accept any practical suggestion that could cause a range of values eg misjudging the centre of the ray eg not replacing mirror / ray box in the same position</td>
<td>measuring the angle incorrectly is insufficient moving the mirror / ray box is insufficient</td>
<td>1</td>
<td>AO2 4.6.1.3</td>
</tr>
<tr>
<td>05.3</td>
<td>range = 10 or mean of 51 calculated 5(º)</td>
<td>an answer of 5(º) scores 2 marks</td>
<td>1</td>
<td>AO3 4.6.1.3</td>
</tr>
<tr>
<td>05.4</td>
<td>within experimental accuracy the angle of incidence and the angle of reflection are the same or the angle of reflection is usually different to the angle of incidence relevant use of data eg at 20º / 30º / 40º there is at least one measurement of angle of reflection that is exactly the same or at 50º there are big differences</td>
<td>allow the angle of incidence is nearly the same as the angle of reflection allow only a few of the values are the same / similar allow the idea of a range of values allow 50º includes anomalous results an answer in terms of calculated mean(s) may score both marks eg mean calculated for one or more angle of reflection (1) conclusion correctly stating angle i = / ≠ angle r (1)</td>
<td>1</td>
<td>AO3 4.6.1.3</td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>05.5</td>
<td>results could be collected for angles (of incidence) not yet measured</td>
<td>allow a stated angle of incidence eg 10° or 60° changing the mirror is insufficient ignore repeat the measurements</td>
<td>1</td>
<td>AO3 4.6.1.3</td>
</tr>
<tr>
<td>05.6</td>
<td>replace the mirror with an irregular reflecting surface</td>
<td>allow use an irregular reflecting surface replace mirror with paper is insufficient do not accept use a glass block</td>
<td>1</td>
<td>AO3 4.6.1.3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>06.1</td>
<td>arrow of equal size pointing vertically upwards labelled ‘upthrust’</td>
<td>judged by eye ignore horizontal arrows if equal and opposite horizontal arrows of unequal length negates this mark ignore buoyancy ignore 25 kN</td>
<td>1</td>
<td>AO2 4.5.1.4 AO1 4.5.5.1.2</td>
</tr>
<tr>
<td>06.2</td>
<td>weight = 25 kN</td>
<td>an answer of 2600 scores 4 marks allow 24 to 25 kN inclusive</td>
<td>1</td>
<td>AO3</td>
</tr>
<tr>
<td></td>
<td>25 000 = mass \times 9.8 or $m = \frac{25 000}{9.8}$</td>
<td>allow their W correctly converted and substituted</td>
<td>1</td>
<td>AO2</td>
</tr>
<tr>
<td></td>
<td>$m = 2551$ kg</td>
<td>allow correctly calculated value using their converted W allow a value correctly calculated with W in kN</td>
<td>1</td>
<td>AO2 4.5.1.1 4.5.1.3</td>
</tr>
<tr>
<td></td>
<td>$m = 2600$ kg</td>
<td>allow a calculated answer correctly rounded to 2 significant figures</td>
<td>1</td>
<td>AO2</td>
</tr>
<tr>
<td>06.3</td>
<td>Newton’s 3rd law (of motion)</td>
<td></td>
<td>1</td>
<td>AO1 4.5.6.2.3</td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>06.4</td>
<td>vertical force (50 N) drawn and horizontal force (150 N) drawn to the same scale</td>
<td>resultant tension force in the correct direction</td>
<td>1</td>
<td>AO2 4.5.1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value of the tension force in the range 156 N–160 N</td>
<td>shown by an arrowhead</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value of direction in the range 18°–20° (from the horizontal)</td>
<td>allow a calculated value of 158</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>allow 70° to 72° (from the vertical)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>allow a bearing in the range 288 to 290</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>07.1</td>
<td>any one from:</td>
<td>allow number of turns / coils on the primary was increased</td>
<td>1</td>
<td>AO3 4.7.3.4</td>
</tr>
<tr>
<td></td>
<td>• too few turns / coils on the secondary</td>
<td>ignore human error</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• p.d. across the primary was reduced</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07.2</td>
<td>the p.d. (across the secondary) goes above 2V</td>
<td>allow p.d. across secondary is higher than p.d. across primary after 20 turns</td>
<td>1</td>
<td>AO3 4.7.3.4</td>
</tr>
<tr>
<td>07.3</td>
<td>it increases (until the nails reach a constant temperature)</td>
<td></td>
<td>1</td>
<td>AO1 4.6.3.1</td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| 07.4 | $\frac{640}{4} = \frac{V_p}{1.75}$
$V_p = \frac{640 \times 1.75}{4}$
$V_p = 280 \text{ (V)}$
$280 \times I_p = 336$
$I_p = 1.2 \text{ (A)}$
or
$336 = I_s \times 1.75 \; (1)$
$I_s = \frac{336}{1.75} \; (1)$
$I_s = 192 \text{ (A)} \; (1)$
$I_p = 192 \times \frac{4}{640} \; (1)$
$I_p = 1.2 \text{ (A)} \; (1)$ | an answer of 1.2 (A) scores **5** marks
allow their calculated $V_p \times I_p = 336$
allow an answer that is consistent with their calculated value of V_p
allow $I_p = \text{their calculated } I_p \times \frac{4}{640}$
allow an answer that is consistent with their calculated value of I_s | 1 | AO2
4.7.3.4 |
<p>| Total | | | 8 |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Extra information</th>
<th>Mark</th>
<th>AO / Spec. Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.1</td>
<td>(force of) gravity causes the satellite to accelerate (towards the Earth)</td>
<td>allow satellite is (constantly) accelerating</td>
<td>1</td>
<td>AO1 4.8.1.3</td>
</tr>
<tr>
<td></td>
<td>the acceleration causes a change in direction</td>
<td>acceleration causes a change in speed negates this mark point</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>velocity changes because direction changes</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>08.2</td>
<td>length of orbit taken from graph = 42 100 (km)</td>
<td>an answer of 15 scores 5 marks</td>
<td>1</td>
<td>AO2 4.8.1.3 4.5.6.1.2</td>
</tr>
<tr>
<td></td>
<td>42 100 = 7.73 x time or time = [\frac{42 100}{7.73}]</td>
<td>allow their distance = 7.73 x time</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>time (1 orbit) = 5446(s)</td>
<td>allow a value consistent with their distance</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>number of orbits = (\frac{24 \times 3600}{5446}) = 15.86</td>
<td>allow (\frac{24}{1.51}) = 15.86</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>number of orbits = 15</td>
<td>allow a value consistent with their distance</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or length of orbit taken from graph = 42 100 (km) (1)</td>
<td>an answer of 16 scores 4 marks</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.73 = [\frac{\text{distance}}{24 \times 3600}] (1)</td>
<td>allow a value consistent with their two distances</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>distance = 667 872 (km) (1)</td>
<td>allow a value consistent with their two distances</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>number of orbits = (\frac{667 872}{42 100}) = 15.86 (1)</td>
<td>up to full marks can be awarded for a method calculating velocity in km/h and time in hours</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>08.3</td>
<td>the predicted data is very close to the actual data</td>
<td></td>
<td>1</td>
<td>AO3 4.8.1.3</td>
</tr>
<tr>
<td>08.4</td>
<td>supported the prediction (made by Bode)</td>
<td>allow predicted and actual values are very close</td>
<td>1</td>
<td>AO3 4.8.1.3</td>
</tr>
<tr>
<td></td>
<td>so provides evidence that the equation is true / correct / works /</td>
<td>allow proves for provides evidence</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>accurate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>09.1</td>
<td>an idea used to explain observations and data</td>
<td></td>
<td>1</td>
<td>AO1 key ideas</td>
</tr>
<tr>
<td>09.2</td>
<td>different models may be appropriate in different situations</td>
<td>allow one particular model may not be able to explain all observations</td>
<td>1</td>
<td>AO1 key ideas</td>
</tr>
<tr>
<td>09.3</td>
<td>new (experimental) evidence / data</td>
<td></td>
<td>1</td>
<td>AO1 key ideas</td>
</tr>
<tr>
<td></td>
<td>evidence cannot be explained using an existing model or predictions made using old model are shown to be incorrect</td>
<td>allow old model based on data now shown to be incorrect</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>new model explains new evidence or predictions made with new model are shown to be correct</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a suitable example given eg nuclear model of the atom replacing the plum pudding model</td>
<td>allow tectonic plates replacing static land masses</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>big bang theory replacing other theories for the creation of the universe</td>
<td>allow heliocentric model of solar system replacing geocentric model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.4</td>
<td>velocity / speed is slower in shallow water</td>
<td>allow one part of the wave (front) changes speed before other parts</td>
<td>1</td>
<td>AO2 4.6.2.2</td>
</tr>
<tr>
<td></td>
<td>so edge of wave (front) entering shallow water slows down</td>
<td>allow an answer in terms of wave (front) travelling from shallow to deep water</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>but the part of the wave (front) in deeper water continues at a higher speed (leading to a change in direction of the wave fronts)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>09.5</td>
<td>every point on the wave (front) enters / hits the shallow water at the same time and so every point slows down at the same time</td>
<td>allow changes speed for slows down allow an answer in terms of wave (front) travelling from shallow to deep water</td>
<td>1</td>
<td>AO2 4.6.2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>10.1</td>
<td>at least three circles drawn clockwise arrows on circles</td>
<td>allow 1 mark for one or two circles with clockwise arrows</td>
<td>1 AO1 4.7.2.1</td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>4×10^{-6}</td>
<td></td>
<td>1 AO1 4.7.2.1</td>
<td></td>
</tr>
<tr>
<td>10.3</td>
<td>the sides of the coil (parallel to the magnet) experience a force (in opposite directions) the forces cause moments that act in the same (clockwise / anticlockwise) direction or the moments cause the coil to rotate (clockwise / anticlockwise) (each half-revolution) the two halves of the (rotating) commutator swap from one (carbon) brush to the other (each half-revolution) the commutator reverses the current (in the coil) or keeping the forces in the same direction (keeping the coil rotating)</td>
<td>allow the current creates a magnetic field ignore Fleming’s Left Hand Rule allow the magnetic fields interact to create a pair of forces (acting in opposite directions) or allow the magnetic fields interact causing the coil to rotate allow keeps the current in the same direction relative to the (permanent) magnetic field</td>
<td>1 AO1 4.7.2.3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>