GCSE
COMBINED SCIENCE: TRILOGY

Higher Tier
Chemistry Paper 1H

Thursday 17 May 2018 Morning Time allowed: 1 hour 15 minutes

Materials
For this paper you must have:
• a ruler
• a scientific calculator
• the periodic table (enclosed).

Instructions
• Use black ink or black ball-point pen.
• Fill in the boxes at the top of this page.
• Answer all questions in the spaces provided.
• Do all rough work in this book. Cross through any work you do not want to be marked.
• In all calculations, show clearly how you work out your answer.

Information
• The maximum mark for this paper is 70.
• The marks for questions are shown in brackets.
• You are expected to use a calculator where appropriate.
• You are reminded of the need for good English and clear presentation in your answers.
This question is about electrolysis.

A student investigates the mass of copper produced during electrolysis of copper chloride solution.

Figure 1 shows the apparatus.

Figure 1

Which gas is produced at the positive electrode (anode)?

Tick **one** box.

- carbon dioxide
- chlorine
- hydrogen
- oxygen
Copper is produced at the negative electrode (cathode).

What does this tell you about the reactivity of copper?

Tick one box.

- Copper is less reactive than hydrogen
- Copper is less reactive than oxygen
- Copper is more reactive than carbon
- Copper is more reactive than chlorine

Table 1 shows the student’s results.

Table 1

<table>
<thead>
<tr>
<th>Time in mins</th>
<th>Experiment 1</th>
<th>Experiment 2</th>
<th>Experiment 3</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.60</td>
<td>0.58</td>
<td>0.62</td>
<td>0.60</td>
</tr>
<tr>
<td>2</td>
<td>1.17</td>
<td>1.22</td>
<td>1.21</td>
<td>1.20</td>
</tr>
<tr>
<td>4</td>
<td>2.40</td>
<td>2.41</td>
<td>2.39</td>
<td>2.40</td>
</tr>
<tr>
<td>5</td>
<td>3.02</td>
<td>X</td>
<td>3.01</td>
<td>3.06</td>
</tr>
</tbody>
</table>

Determine the **mean** mass of copper produced after 3 minutes.

[1 mark]

Mass = __________________________ mg

Question 1 continues on the next page
Calculate the mass X of copper produced in Experiment 2 after 5 minutes.

Use Table 1 on page 3

[2 marks]

Mass $X = \text{_______________ mg}$

The copper chloride solution used in the investigation contained 300 grams per dm3 of solid CuCl$_2$ dissolved in 1 dm3 of water.

The student used 50 cm3 of copper chloride solution in each experiment.

Calculate the mass of solid copper chloride used in each experiment.

[3 marks]

Mass = \text{_______________ g}
This question is about sodium and chlorine.

Figure 2 shows the positions of sodium and chlorine in the periodic table.

Figure 2

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cl</td>
</tr>
</tbody>
</table>

State **one** difference and **one** similarity in the electronic structure of sodium and of chlorine.

[2 marks]

Difference

Similarity

Sodium atoms react with chlorine atoms to produce sodium chloride (NaCl).

Describe what happens when a sodium atom reacts with a chlorine atom.

Write about electron transfer in your answer.

[4 marks]
The reaction between sodium and chlorine is an exothermic reaction.

Complete the reaction profile for the reaction between sodium and chlorine.

Figure 3

```
Relative energy

Reactants

Progress of reaction
```
A student plans a method to prepare pure crystals of copper sulfate.

The student’s method is:

1. Add one spatula of calcium carbonate to dilute hydrochloric acid in a beaker.
2. When the fizzing stops, heat the solution with a Bunsen burner until all the liquid is gone.

The method contains several errors and does not produce copper sulfate crystals.

Explain the improvements the student should make to the method so that pure crystals of copper sulfate are produced.

[6 marks]
This question is about the halogens.

Write the state symbol for chlorine at room temperature. [1 mark]

\[\text{Cl}_2 \ (\text{______}) \]

Figure 4 represents one molecule of fluorine. [2 marks]

Complete the dot and cross diagram on Figure 4.

You should show only the electrons in the outer shells.

Figure 4

A fluorine atom can be represented as \(^{19}\text{F}\) \(^9\). [1 mark]

What is the total number of electrons in a fluorine molecule (\(\text{F}_2\))?

Tick one box.

9 14 18 38

Aluminium reacts with bromine to produce aluminium bromide. [2 marks]

Complete the balanced chemical equation for this reaction.

\[\text{______Al} + \text{______Br}_2 \rightarrow 2 \text{__________} \]
When chlorine reacts with potassium bromide, chlorine displaces bromine.

\[\text{Cl}_2 + 2 \text{KBr} \rightarrow \text{Br}_2 + 2 \text{KCl} \]

Explain why chlorine is more reactive than bromine.

[3 marks]

Turn over for the next question
This question is about structure and bonding.

Figure 5 shows part of the structure and bonding in diamond.

Figure 5

Explain why diamond has a high melting point.

[3 marks]
Figure 6 shows part of the structure and bonding in sodium chloride (NaCl).

Figure 6

Chloride ion
Sodium ion

Explain the conditions needed for sodium chloride to conduct electricity. [3 marks]

Question 5 continues on the next page
Figure 7 shows the structure of sodium.

Describe how sodium conducts thermal energy.

[3 marks]
Group 2 metal carbonates thermally decompose to produce a metal oxide and a gas.

Give the formula of each product when calcium carbonate \((\text{CaCO}_3)\) is heated.

\[\text{[2 marks]}\]

\[
\text{_________________________} \text{ and } \text{_________________________}
\]

The relative formula mass \((M_r)\) of a Group 2 metal carbonate is 197

Relative atomic masses \((A_r):\) \(\text{C} = 12\) \(\text{O} = 16\)

Calculate the relative atomic mass \((A_r)\) of the Group 2 metal in the metal carbonate.

Name the Group 2 metal.

\[\text{[3 marks]}\]

\[
\text{_________________________}
\]

\[
\text{_________________________}
\]

\[
\text{_________________________}
\]

\[
\text{_________________________}
\]

Relative atomic mass \((A_r) = \) ____________________________

Metal ____________________________

Question 6 continues on the next page
Figure 8 shows the volume of gas produced when a different Group 2 carbonate, W, is heated.

Figure 8

![Graph showing volume of gas produced vs. mass of Group 2 carbonate heated]

Calculate the gradient of the line in Figure 8.

Give the unit.

\[0.6 \text{ cm}^3/\text{g} \]

Gradient \[\frac{\text{Volume of gas in cm}^3}{\text{Mass of Group 2 carbonate heated in g}} \]

Unit \[\text{cm}^3/\text{g} \]
24 dm3 of gas is produced when one mole of a Group 2 carbonate is heated.

Determine the relative formula mass of the Group 2 carbonate W.

Use Figure 8

[4 marks]

\[\text{Relative formula mass } (M) = _____________________}\]
A scientist does two tests on four white solids. The solids are labelled A, B, C and D.

Test 1 Adds the sample of the solid to distilled water and stirs.

Test 2 Measures the pH of the solution after Test 1

Table 2 shows the results.

<table>
<thead>
<tr>
<th>Solid</th>
<th>Appearance after stirring</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>colourless solution, no solid</td>
<td>14</td>
</tr>
<tr>
<td>B</td>
<td>colourless solution, no solid</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>colourless solution, solid remains</td>
<td>9</td>
</tr>
<tr>
<td>D</td>
<td>colourless liquid, solid remains</td>
<td>7</td>
</tr>
</tbody>
</table>

These four solids are:
- magnesium oxide
- phosphorus oxide
- silicon dioxide
- sodium oxide.

Table 3 shows the solubility of these four solids in water.

<table>
<thead>
<tr>
<th>Solid</th>
<th>Solubility in grams per 100 cm³ of water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium oxide</td>
<td>0.01</td>
</tr>
<tr>
<td>Phosphorus oxide</td>
<td>52</td>
</tr>
<tr>
<td>Silicon dioxide</td>
<td>0</td>
</tr>
<tr>
<td>Sodium oxide</td>
<td>109</td>
</tr>
</tbody>
</table>
07.1 Identify the solids A, B, C and D.

Explain your answers. [6 marks]

Question 7 continues on the next page
10 cm³ of solution B is added to a beaker.

Distilled water is added to the beaker until the final volume in the beaker is 1000 cm³

The pH of the solution is measured before and after distilled water is added.

Table 4 shows the results.

<table>
<thead>
<tr>
<th>Volume of solution in beaker</th>
<th>pH of solution B</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 cm³</td>
<td>3</td>
</tr>
<tr>
<td>1000 cm³</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 4

Calculate the value of X.

[2 marks]

X = __________________________
This question is about iron.

Iron reacts with dilute hydrochloric acid to produce iron chloride solution and one other product.

Name the other product. [1 mark]

Suggest how any unreacted iron can be separated from the mixture. [1 mark]

Magnesium reacts with iron chloride solution.

3 Mg + 2 FeCl₃ → 2 Fe + 3 MgCl₂

0.120 g of magnesium reacts with excess iron chloride solution.

Relative atomic masses (Aᵣ): Mg = 24 Fe = 56

Calculate the mass of iron produced, in mg [5 marks]

Mass of iron = ______________________ mg

Question 8 continues on the next page
Explain which species is reduced in the reaction between magnesium and iron chloride.

\[3 \text{Mg} + 2 \text{FeCl}_3 \rightarrow 2 \text{Fe} + 3 \text{MgCl}_2 \]

Your answer should include the half equation for the reduction. [3 marks]