Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students’ responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students’ scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark schemes on the basis of one year’s document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk
Information to Examiners

1. General

The mark scheme for each question shows:
- the marks available for each part of the question
- the total marks available for the question
- the typical answer or answers which are expected
- extra information to help the Examiner make his or her judgement
- the Assessment Objectives and specification content that each question is intended to cover.

The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and should only be applied to that item in the mark scheme.

At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.

In general the right-hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent.

2. Emboldening and underlining

2.1 In a list of acceptable answers where more than one mark is available ‘any two from’ is used, with the number of marks emboldened. Each of the following bullet points is a potential mark.

2.2 A bold and is used to indicate that both parts of the answer are required to award the mark.

2.3 Alternative answers acceptable for a mark are indicated by the use of or. Different terms in the mark scheme are shown by a ; eg allow smooth / free movement.

2.4 Any wording that is underlined is essential for the marking point to be awarded.
3. Marking points

3.1 Marking of lists

This applies to questions requiring a set number of responses, but for which students have provided extra responses. The general principle to be followed in such a situation is that ‘right + wrong = wrong’.

Each error / contradiction negates each correct response. So, if the number of error / contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.

However, responses considered to be neutral (indicated as * in example 1) are not penalised.

Example 1: What is the pH of an acidic solution?

<table>
<thead>
<tr>
<th>Student</th>
<th>Response</th>
<th>Marks awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>green, 5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>red*, 5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>red*, 8</td>
<td>0</td>
</tr>
</tbody>
</table>

Example 2: Name two planets in the solar system.

<table>
<thead>
<tr>
<th>Student</th>
<th>Response</th>
<th>Marks awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neptune, Mars, Moon</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Neptune, Sun, Mars, Moon</td>
<td>0</td>
</tr>
</tbody>
</table>

3.2 Use of chemical symbols / formulae

If a student writes a chemical symbol / formula instead of a required chemical name, full credit can be given if the symbol / formula is correct and if, in the context of the question, such action is appropriate.

3.3 Marking procedure for calculations

Marks should be awarded for each stage of the calculation completed correctly, as students are instructed to show their working. Full marks can, however, be given for a correct numerical answer, without any working shown.

3.4 Interpretation of ‘it’

Answers using the word ‘it’ should be given credit only if it is clear that the ‘it’ refers to the correct subject.
3.5 **Errors carried forward**

Any error in the answers to a structured question should be penalised once only.

Papers should be constructed in such a way that the number of times errors can be carried forward is kept to a minimum. Allowances for errors carried forward are most likely to be restricted to calculation questions and should be shown by the abbreviation ecf in the marking scheme.

3.6 **Phonetic spelling**

The phonetic spelling of correct scientific terminology should be credited *unless* there is a possible confusion with another technical term.

3.7 **Brackets**

(…..) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

3.8 **Allow**

In the mark scheme additional information, ‘allow’ is used to indicate creditworthy alternative answers.

3.9 **Ignore**

Ignore is used when the information given is irrelevant to the question or not enough to gain the marking point. Any further correct amplification could gain the marking point.

3.10 **Do not accept**

Do *not* accept means that this is a wrong answer which, even if the correct answer is given as well, will still mean that the mark is not awarded.

4. **Level of response marking instructions**

Extended response questions are marked on level of response mark schemes.

- Level of response mark schemes are broken down into levels, each of which has a descriptor.
- The descriptor for the level shows the average performance for the level.
- There are two marks in each level.

Before you apply the mark scheme to a student’s answer, read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.
Step 1: Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer.

When assigning a level you should look at the overall quality of the answer. Do not look to penalise small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level.

Use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 2 with a small amount of level 3 material it would be placed in level 2 but be awarded a mark near the top of the level because of the level 3 content.

Step 2: Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this.

The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the indicative content to reach the highest level of the mark scheme.

You should ignore any irrelevant points made. However, full marks can be awarded only if there are no incorrect statements that contradict a correct response.

An answer which contains nothing of relevance to the question must be awarded no marks.
<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Extra information</th>
<th>Mark</th>
<th>AO / Spec. Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.1</td>
<td>chlorine</td>
<td></td>
<td>1</td>
<td>AO2 5.4.3.4</td>
</tr>
<tr>
<td>01.2</td>
<td>copper is less reactive than hydrogen</td>
<td></td>
<td>1</td>
<td>AO2 5.4.3.4</td>
</tr>
<tr>
<td>01.3</td>
<td>1.8 (mg)</td>
<td>allow an answer in range 1.7–1.9</td>
<td>1</td>
<td>AO3 5.4.3.4</td>
</tr>
<tr>
<td>01.4</td>
<td>$\frac{3.02 + 3.01 + x}{3} = 3.06$</td>
<td>an answer of 3.15 (mg) scores 2 marks</td>
<td>1</td>
<td>AO2 5.4.3.4</td>
</tr>
<tr>
<td></td>
<td>3.15 (mg)</td>
<td>allow any other suitable method</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if no other mark awarded allow 9.18 for 1 mark</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>01.5</td>
<td>$\frac{50}{1000}$ or $\frac{1}{20}$ or 0.05</td>
<td>an answer of 15 (g) scores 3 marks</td>
<td>1</td>
<td>AO2 5.3.2.5</td>
</tr>
<tr>
<td></td>
<td>(0.05) × 300</td>
<td>the second mark is dependent on the first mark being scored</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 (g)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or $\frac{300}{1000}$ or $\frac{3}{10}$ or 0.03 (1)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.3) × 50 (1)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 (g) (1)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if no other mark awarded allow 150 or 15 000 for 1 mark</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>02.1</td>
<td>(difference) sodium has one and chlorine has seven electrons in outer level / shell or number of electrons (similarity) both have three / same number of levels / shells or have electrons in third level / shell or both have incomplete (outer) levels / shells</td>
<td>number of electrons must be correct if quoted</td>
<td>1</td>
<td>AO2 5.1.1.7 5.1.2.1</td>
</tr>
<tr>
<td>02.2</td>
<td>sodium (atom) loses one (outer shell electron) chlorine (atom) gains one (electron)</td>
<td>allow marks from suitable diagram(s) allow moves / transfers for loses do not accept sodium ion loses do not accept chloride transfer of 1 electron from chlorine to sodium max 2 marks reference to sharing or covalent bonding max 3 marks</td>
<td>1</td>
<td>AO1 5.2.1.2</td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>02.3</td>
<td></td>
<td>Relative energy</td>
<td>1</td>
<td>AO1 5.5.1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reactants</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Products)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Progress of reaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ignore labels</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>any curve / line going up and then down</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>products line below reactants</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>allow curve to start / finish anywhere along reactant / product lines</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Level 3: Relevant points (reasons / causes) are identified, given in detail and logically linked to form a clear account.</td>
<td>5–6</td>
<td>AO3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level 2: Relevant points (reasons / causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.</td>
<td>3–4</td>
<td>AO3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.</td>
<td>1–2</td>
<td>AO1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No relevant content</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indicative content:

- uses sulfuric acid not hydrochloric acid
 or sulfuric acid needed
- uses copper carbonate / oxide not calcium carbonate
 or copper carbonate / oxide needed
- add solid until solid remains or is in excess or no more
 reacts / dissolves
 so that most / all of the acid reacts
- filter
 to remove excess or unreacted carbonate / oxide / solid
- heat gently or partially evaporate or leave
 until crystals appear or to crystallise

for level 3 the correct chemicals must have been selected

Total | **6** |
<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Extra information</th>
<th>Mark</th>
<th>AO / Spec. Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.1</td>
<td>g</td>
<td>do not accept upper case (G) do not accept gas</td>
<td>1</td>
<td>AO1 5.1.2.6</td>
</tr>
<tr>
<td>04.2</td>
<td>![Diagram: overlapping circles]</td>
<td>one shared pair anywhere in overlap between two circles or on intersection 6 other electrons on each atom allow dots or crosses or mixture for all marks ignore any inner shell electrons</td>
<td>1</td>
<td>AO1 5.1.2.6 AO2 5.2.1.4</td>
</tr>
<tr>
<td>04.3</td>
<td>18</td>
<td></td>
<td>1</td>
<td>AO2 5.1.1.5 5.1.2.6</td>
</tr>
</tbody>
</table>
| 04.4 | AlBr₃
2 Al + 3 Br₂ (→ 2 AlBr₃) | ignore state symbols ignore charges ignore brackets as eg Al(Br)₃ | 1 | AO2 5.1.1.1 5.1.2.6 |
| | | allow 1 mark for balancing their equation with an incorrect product | 1 | |
04.5

chlorine is a smaller atom
or has fewer energy levels
or outer shell closer to nucleus

chlorine has less shielding
or has the greater attraction
between the nucleus and the
outer shell or incoming electron

therefore chlorine can gain an
electron (into the outer shell)
more easily

max 2 if outer shell / level not
mentioned
’it’ refers to chlorine
allow converse reasons for
bromine being less reactive

ignore chlorine has fewer
electrons

1
AO1
5.1.2.6

1
AO1
5.1.2.6

1
AO2
5.1.2.6

if no other marks awarded allow
1 mark for correct trend in
reactivity in Group 7

do not accept reference to
incorrect particles eg chloride
atom

Total
9
<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Extra information</th>
<th>Mark</th>
<th>AO / Spec. Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.1</td>
<td>covalent bonds</td>
<td>max 2 for incorrect reference to particles or bonds</td>
<td>1</td>
<td>AO1 5.2.3.1</td>
</tr>
<tr>
<td></td>
<td>giant structure / macromolecule</td>
<td>allow each C has 4 bonds</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>allow giant covalent structure for 2 marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>allow giant ionic / lattice structure for 1 mark</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ignore lattice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lots of energy needed to break / overcome</td>
<td>allow disrupt structure</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ignore heat and high temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if no other marks awarded allow 1 mark for strong / many bonds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05.2</td>
<td>dissolved (in water) or aqueous</td>
<td>max 2 for incorrect reference to particles or bonds</td>
<td>1</td>
<td>AO1 5.2.2.3</td>
</tr>
<tr>
<td></td>
<td>molten / liquid</td>
<td>allow in solution</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>so ions are mobile or free moving</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05.3</td>
<td>delocalised electrons (from outer shell)</td>
<td>max 2 for incorrect reference to particles or bonds</td>
<td>1</td>
<td>AO1 5.2.1.5</td>
</tr>
<tr>
<td></td>
<td>(free to) move</td>
<td></td>
<td>1</td>
<td>5.2.2.8</td>
</tr>
<tr>
<td></td>
<td>energy transferred (through structure)</td>
<td>ignore conducts thermal energy</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ignore electricity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if no other mark awarded allow 1 mark for ions / atoms vibrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>06.1</td>
<td>CaO</td>
<td>either order</td>
<td>1</td>
<td>AO1</td>
</tr>
<tr>
<td></td>
<td>CO₂</td>
<td>ignore names</td>
<td></td>
<td>5.3.1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>06.2</td>
<td>[12 + (3 × 16)] or 60 (197 − 60 =) 137 barium or Ba</td>
<td>an answer of 137 scores the 2 calculation marks</td>
<td>1</td>
<td>AO2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.3.1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.3.1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.1.1.5</td>
</tr>
<tr>
<td>06.3</td>
<td>(working) Y increase and X increase measured from graph and substitution into $\frac{\Delta Y}{\Delta X}$</td>
<td>an answer of 160–174 scores the 2 calculation marks</td>
<td>1</td>
<td>AO2</td>
</tr>
<tr>
<td></td>
<td>(answer) 167</td>
<td></td>
<td>1</td>
<td>5.3.1.2</td>
</tr>
<tr>
<td></td>
<td>(units) cm³/g</td>
<td></td>
<td>1</td>
<td>5.3.1.3</td>
</tr>
<tr>
<td></td>
<td>Y-axis: 80–85 162–170 248–252 330–335 X-axis: 0.5 1.0 1.5 2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
<td>AO / Spec. Ref.</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>06.4</td>
<td>(from graph) volume to 240 cm³ mass = 1.45 g</td>
<td>an answer of 140–150 scores 4 marks</td>
<td>1</td>
<td>AO3 5.3.1.2 5.3.1.3</td>
</tr>
<tr>
<td></td>
<td>ratio is (\frac{1}{100}) (ie (\frac{24000}{240}))</td>
<td>an answer of 0.14–0.15 scores 3 marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(100 \times 1.45)</td>
<td>allow answer based on any reading from the graph (eg 250 cm³ = 1.5 g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>145</td>
<td>allow ratio from their volume</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>(\left(\frac{24000}{250} \right) \times 1.5)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>allow range 140–150</td>
<td>(rearrangement of (y = mx) where (m =) answer from question 06.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x = (\frac{y}{m}) (1)</td>
<td>allow range 140–150</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 (dm³) to 24 000 (cm³) (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\frac{24000}{250}) (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>144 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 12
<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Mark</th>
<th>AO / Spec. Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.1</td>
<td>Level 3: Relevant points (reasons / causes) are identified, given in detail and logically linked to form a clear account.</td>
<td>5–6</td>
<td>AO3</td>
</tr>
<tr>
<td></td>
<td>Level 2: Relevant points (reasons / causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.</td>
<td>3–4</td>
<td>AO3</td>
</tr>
<tr>
<td></td>
<td>Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.</td>
<td>1–2</td>
<td>AO1 AO2</td>
</tr>
<tr>
<td></td>
<td>No relevant content</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Indicative content:</td>
<td></td>
<td></td>
<td>5.1.2.3 5.4.2.4</td>
</tr>
<tr>
<td>A is sodium oxide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B is phosphorus oxide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C is magnesium oxide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D is silicon dioxide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>linked statements:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A is sodium oxide because it has highest pH or pH = 14 or is a strong alkali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B is phosphorus oxide because it has lowest pH or pH = 3 or is an acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C is magnesium oxide because it has 2nd highest pH or pH = 9 or is a (weak) alkali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D is silicon dioxide because it is neutral or pH = 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A and B are sodium oxide or phosphorus oxide because both soluble or no solid remains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C is magnesium oxide because it will be the colourless solution with solid remaining</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D is silicon dioxide because it will be the colourless liquid with solid remaining</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for level 3 the solids must be correctly identified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td>07.2</td>
<td>dilution by a factor of 100 (pH=) 5</td>
<td>an answer of (pH=) 5 gains 2 marks allow pH changes by 1 when solution is diluted by factor of 10 or allow pH changes by 2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Question</td>
<td>Answers</td>
<td>Extra information</td>
<td>Mark</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td>08.1</td>
<td>hydrogen or H₂</td>
<td>allow hydrogen gas ignore H without the 2 subscript</td>
<td>1</td>
</tr>
<tr>
<td>08.2</td>
<td>filtration / filter</td>
<td>allow magnet or decant ignore heating</td>
<td>1</td>
</tr>
<tr>
<td>08.3</td>
<td>(Mg) $\frac{0.12}{24}$ or 0.005 (moles) (mass of Fe) = 0.00333×56 = 0.1866 (g) = 187 (mg)</td>
<td>an answer of 185–190 (mg) scores 5 marks an answer of 0.185–0.19 scores 4 marks mark is for ÷ by 24</td>
<td>1</td>
</tr>
<tr>
<td>OR</td>
<td>(Mg) = $\frac{0.12}{3 \times 24} = \frac{72}{(3 \times 24)}$ (1) = 0.00166 or $\frac{1}{600}$ (moles) (1) (mass of Fe) = 0.00166 or $\frac{1}{600} \times 112 (2 \times 56)$ (1) = 0.1866 (g) (1) 187 (mg) (1)</td>
<td>an answer of 280 (mg) scores 4 marks an answer of 0.280 scores 3 marks (no ratio from equation) 184 scores 0 [=(3×24) + (2×56)]</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>Answers</th>
<th>Extra information</th>
<th>Mark</th>
<th>AO / Spec. Ref.</th>
</tr>
</thead>
</table>
| **08.3 cont.** | OR
72 g Mg → 112g Fe (1)
1 g Mg → \(\frac{112}{72} \) or 1.56 g Fe (1)
0.12 g Mg → \(\frac{112}{72} \) x 0.12 (1)
= 0.1866 (g) (1)
= 187 (mg) (1) | | | |
| **08.4** | Fe\(^{3+}\)
(because) reduction is gain of electrons
Fe\(^{3+}\) + 3e\(^{-}\) → Fe | allow change in oxidation state / (+)3 to 0 | 1 | AO2
1 | AO1
1 | AO2
5.4.1.2
5.4.1.4 |
| **Total** | | | **10** | |