General Comments
This unit provides students with the opportunity to complete a substantial project involving the production of an ICT-related system over an extended period of time. In so doing, students will enhance their transferable practical skills. It is expected that students will investigate a realistic situation and then develop a substantial solution that will meet their identified client’s needs. In so doing a thorough analysis of the current situation and problem is required. Most centres guided students into sensible project ideas that gave potential for the whole mark range. In a few cases it was not clear that centres had given any guidance at all and had left students to their own devices. In these cases, parts of the assessment criteria were not adequately covered to the necessary depth. Administration and marking of student work this year was good in most cases this year, with well-presented projects accompanied by correct administration documentation and comprehensively annotated marking grids. In a small number of cases centres did not make use of the marking grids and tended to award overly high marks that needed adjustment.

Background and Investigation
Describing the background of the systems being looked at was usually done well with students able to consider the organisation, the current system and the users. Not all students could produce good business cases for creating a new solution. It was common to mention vague ideas such as saving paper, being cheaper etc. Most students failed to demonstrate an understanding of system environment. It was common to describe a physical environment, but little attention was paid to the systems that would affect and be affected by the solution.

Many students failed to investigate problems sufficiently. Students usually show evidence of an interview and a questionnaire of some sort. The purpose of the investigation is to find out what the solution must achieve but interviews that ask bland and simplistic questions fail to do this. Questionnaires again need to contain detail rather than be of a general nature. To demonstrate an effective use of investigation techniques the results of the investigation must be useful. In many cases it appears the solution is decided before the research is carried out. The better students made the problem drive the solution and then used appropriate techniques to find useful information to progress the development of a solution. The area of client needs did not always reflect what the solution should cover. Students were often happy to keep these needs quite simple and then did not show adequate understanding of the problem.

Analysis and Deliverables
The quality of student work for row 1 was variable. Some students still submitted copy and pasted definitions of the DPA and Health and Safety legislation, which is not creditable unless it is specifically related to the problem being tackled. We have seen some students who only consider the constraints in this area and fail to define the scope. It is important that the scope should state what aspects the solution will cover, and what aspects will not be covered.

For row 2 students could usually describe the solution they proposed to create and mention sensible benefits expected from their solutions. In many cases students did not however, show a full understanding of the deliverables they were intending for their clients.

Rows 3 and 4 were generally well assessed by centres, reflecting the ability of students.

In row 5 most students attempted to produce a set of quantitative and qualitative evaluation criteria but often there was little evidence as to how these provided an objective assessment of the solution. Many students simply included their client needs from section 1 written in a different way. When looking at a final solution it is important to consider how well it works, how well it meets the needs of the client and how useful it will be.
Design and Planning for Implementation
For row 1 alternative design solutions are not a comparison of application software implementation solutions. For example, students who produce a comprehensive list of the advantages and disadvantages of using database software, spread sheet software or an updated manual system will not gain any marks at all. There needs to be a detailed discussion as to how aspects of the solution could work. When students explore in depth what a client really needs then solutions become much more sophisticated and purposeful.

Rows 2 and 3 were generally fine although some students still focus on the planning of the production of the project report for their A level project, rather than planning what they need to do for the client. The plan should relate to the implementation, testing and installation of the solution.

The testing strategies produced for row 4 were either very well done or trivial regurgitation of generic theory notes about the types of testing. Test strategies must be seen to prove the effectiveness of the implemented system. Test plans for data handling problems must include data if they are to be useful. It is also important to look at the fundamental key processes of the system. Only by outlining exactly what the solution is expected to do can evidence of testing “the solution as a whole” be obtained.

Testing and Documentation of the Solution
As last year, the testing of the solution was tackled reasonably well, and accurately assessed. However, in a substantial number of cases, students fail to realise that testing needs to cover the major process and then go on to cover the solution as a whole. Some students failed to demonstrate clearly what the key processes are or what the “solution as a whole” should include. Some students are still failing to test and reflect on the documentation they have produced, and this can limit marks in rows 3, 4 and 5.

Evaluation of the Implemented Solution
On the whole students are producing better evaluations that are critical of the solution. For the student to show a critical evaluation there needs to be a reference to the testing of the solution. Some students included a reflection by the client and user on the solution and this is good to see as the solution should match the original needs stated in the earlier sections. Some students cross referenced requirements or evaluation criteria with a yes/no type response which is not critical and so did not generate marks.

The Project Report
On the whole students produced good documentation, making good use of word processing software. However, on some occasions top marks were awarded where there were errors and omissions in the report such as page numbers, and consistent section headings.

Mark Ranges and Award of Grades
Grade boundaries and cumulative percentage grades are available on the Results Statistics page of the AQA Website.

Converting Marks into UMS marks
Convert raw marks into Uniform Mark Scale (UMS) marks by using the link below.

UMS conversion calculator