

Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

AS FURTHER MATHEMATICS

Paper 1

Monday 13 May 2019

Afternoon

Time allowed: 1 hour 30 minutes

Materials

- You must have the AQA formulae and statistical tables booklet for A-level Mathematics and A-level Further Mathematics.
- You should have a scientific calculator that meets the requirements of the specification. (You may use a graphical calculator.)

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Examiner's Use			
Question	Mark		
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
TOTAL			

Answer all questions in the spaces provided.

1 Which of the following matrices is an identity matrix?

Circle your answer.

[1 mark]

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Which of the following expressions is the determinant of the matrix $\begin{bmatrix} a & 2 \\ b & 5 \end{bmatrix}$? 2

Circle your answer.

[1 mark]

$$5a - 2b$$

$$5a - 2b$$
 $2a - 5b$ $5b - 2a$

$$5b - 2a$$

$$2b - 5a$$

Point *P* has polar coordinates $\left(2, \frac{2\pi}{3}\right)$. 3

Which of the following are the Cartesian coordinates of P?

Circle your answer.

[1 mark]

$$(1, -\sqrt{3})$$

$$(-\sqrt{3}, 1)$$

$$(1, -\sqrt{3})$$
 $(-\sqrt{3}, 1)$ $(\sqrt{3}, -1)$ $(-1, \sqrt{3})$

$$(-1, \sqrt{3})$$

4 The line *L* has polar equation

$$r = \frac{k}{\sin \theta}$$

where k is a positive constant.

4 (a) Sketch *L*.

[1 mark]

4 (b) State the minimum distance between *L* and the point *O*.

[1 mark]

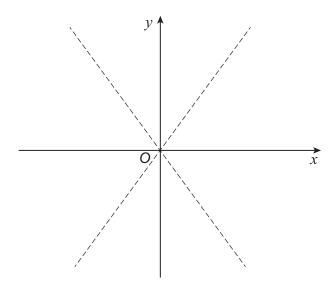
Turn over for the next question

5 A hyperbola *H* has the equation

$$\frac{x^2}{a^2} - \frac{y^2}{4a^2} = 1$$

where a is a positive constant.

5 (a) Write down the equations of the asymptotes of *H*.


[1 mark]

5 (b) Sketch the hyperbola H on the axes below, indicating the coordinates of any points of

The asymptotes have already been drawn.

intersection with the coordinate axes.

[2 marks]

5 (c)	The finite region bounded by H , the positive x -axis, the positive y -axis and the line $y = a$ is rotated through 360° about the y -axis.
	Show that the volume of the solid generated is ma^3 , where $m = 3.40$ correct to three significant figures.
	[5 marks]
	Turn over for the next question

6 (a) On the axes provided, sketch the graph of $x = \cosh(y + b)$ where b is a positive constant. [4 marks] *y* 🛕 0

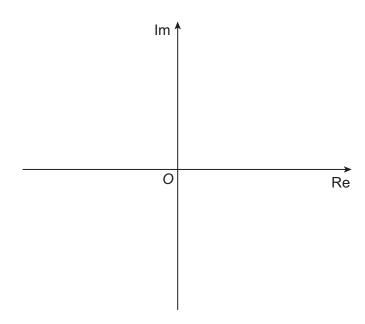
6 (b)	Determine the minimum distance between the graph of $x = \cosh(y + b)$ and the	
	<i>y</i> -axis. [1 m	nark]
	Turn over for the next question	

7 (a)	Show that	
	$\frac{1}{r-1} - \frac{1}{r+1} \equiv \frac{A}{r^2-1}$	
	where A is a constant to be found.	
		[1 mark]
7 (b)	Hence use the method of differences to show that	
	$\sum_{n=0}^{\infty} \frac{1}{r^2 - 1} = \frac{an^2 + bn + c}{4n(n+1)}$	
	r=2 where a,b and c are integers to be found.	
		[4 marks]

Turn over for the next question

8 Given that $z_1 = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$ and $z_2 = 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$

8 (a) Find the value of $|z_1z_2|$


[1 mark]

8 (b) Find the value of $\arg\left(\frac{z_1}{z_2}\right)$

[1 mark]

8 (c) Sketch z_1 and z_2 on the Argand diagram below, labelling the points as P and Q respectively.

[2 marks]

8 (d)	(d) A third complex number w satisfies both $ w = 2$ and $-\pi < \arg w < 0$			
Given that w is represented on the Argand diagram as the point R , find the $P\widehat{R}Q$.				
	Fully justify your answer.			
	[3 marks]			
	Turn over for the next question			
	Tann Sist is the next queenen			

9 ((a)	Saul i	s	solvina	the	equation
9	(u)	Oddi i	J	Solving	uic	cqualion

$$2\cosh x + \sinh^2 x = 1$$

He writes his steps as follows:

$$2\cosh x + \sinh^2 x = 1$$

$$2\cosh x + 1 - \cosh^2 x = 1$$

$$2\cosh x - \cosh^2 x = 0$$

$$\cosh x \neq 0 :: 2 - \cosh x = 0$$

$$\cosh x = 2$$

$$x=\pm\cosh^{-1}(2)$$

Identify and explain the error in Saul's method.

[2 marks]

9 (b)	Anna is solving the different equation
	$\sinh^2(2x) - 2\cosh(2x) = 1$
	and finds the correct answers in the form $x=\frac{1}{p}\cosh^{-1}(q+\sqrt{r})$, where p,q and r are integers.
	Find the possible values of p , q and r .
	Fully justify your answer. [5 marks]
	Turn over for the next question

10 (a)	Using the definition of $\cosh x$ and the Maclaurin series expansion of e^x , find three non-zero terms in the Maclaurin series expansion of $\cosh x$.	d the first [3 marks]
10 (b)	Hence find a trigonometric function for which the first three terms of its Mac series are the same as the first three terms of the Maclaurin series for cosl	claurin n (ix). [3 marks]

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

1 5

11 ((a)	Curve	C has	equation
	(a)	Cuive	U Has	equation

$$y = \frac{x^2 + px - q}{x^2 - r}$$

where p, q and r are positive constants.

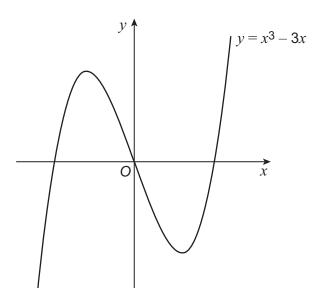
Write down the equations of its asymptotes.

			[2 marks

11 (b)	Find the set of possible <i>y</i> -coordinates for the graph of	
	$y = \frac{x^2 + x - 6}{x^2 - 1}, \qquad x \neq \pm 1$	
	giving your answer in exact form.	
	No credit will be given for solutions based on differentiation.	[6 marks]
	Turn over for the next question	

12	The matrix A is given by	
	$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$	
12 (a)	Prove by induction that, for all integers $n \ge 1$,	
	$\mathbf{A}^n = \begin{bmatrix} 1 & 3^n - 1 \\ 0 & 3^n \end{bmatrix}$	[4 marks]

12 (b)	Find all invariant lines under the transformation matrix A .	
	Fully justify your answer.	[6 marks]
12 (c)	Find a line of invariant points under the transformation matrix A .	[2 marks]


13	Line l_1 has Cartesian equation	
	$x - 3 = \frac{2y + 2}{3} = 2 - z$	
13 (a)	Write the equation of line l_1 in the form	
	$\textbf{r} = \textbf{a} + \lambda \textbf{b}$	
	where λ is a parameter and \boldsymbol{a} and \boldsymbol{b} are vectors to be found.	[2 marks]
13 (b)	Line l_2 passes through the points $P(3, 2, 0)$ and $Q(n, 5, n)$, where n is a corr	ıstant.
13 (b) (i)	Show that the lines l_1 and l_2 are $\operatorname{{\bf not}}$ perpendicular.	[3 marks]

13 (b) (ii)	Explain briefly why lines l_1 and l_2 cannot be parallel.	[2 marks]
13 (b) (iii)	Given that θ is the acute angle between lines l_1 and l_2 , show that	
	$\cos\theta = \frac{p}{\sqrt{34n^2 + qn + 306}}$	
	where p and q are constants to be found.	[3 marks]

14 The graph of $y = x^3 - 3x$ is shown below.

The two stationary points have x-coordinates of -1 and 1

The cubic equation

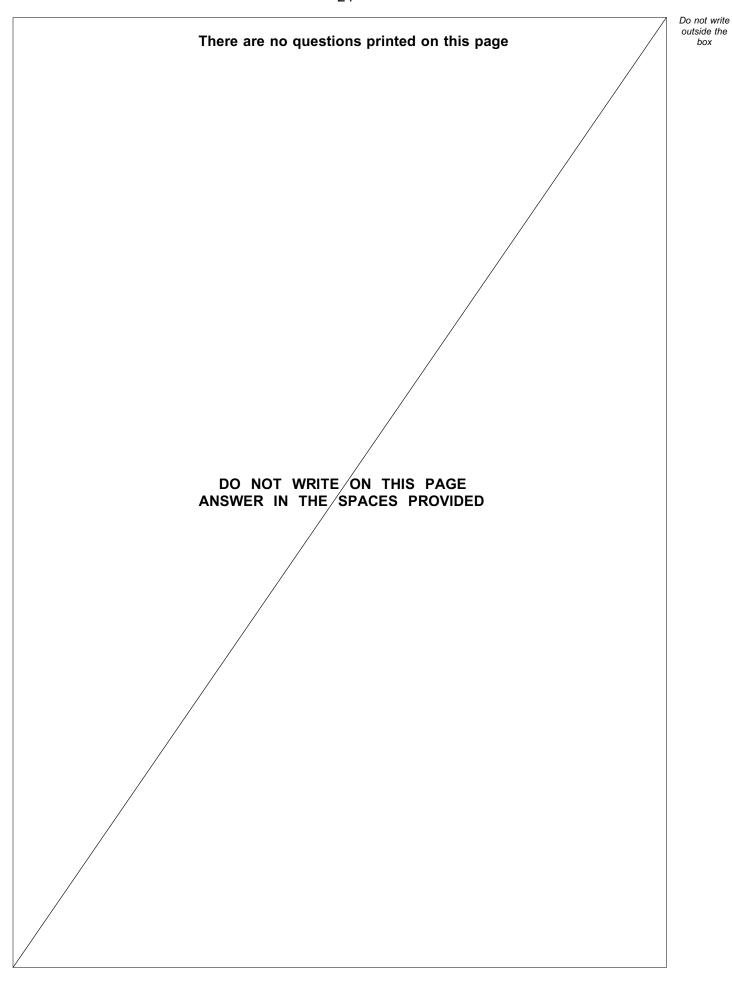
$$x^3 - 3x + p = 0$$

where p is a real constant, has the roots α , β and γ .

The roots α and β are **not** real.

14 (a) Explain why $\alpha + \beta = -\gamma$

[1 mark		
---------	--	--


14 (b) Find the set of possible values for the real constant p.

[2	marks]	

	,	
14 (c)	$f(x) = 0$ is a cubic equation with roots $\alpha + 1$, $\beta + 1$ and $\gamma + 1$	
14 (c) (i)	Show that the constant term of $f(x)$ is $p + 2$	[3 marks]
		[
	,	
44 () (!!)		
14 (c) (ii)	Write down the <i>x</i> -coordinates of the stationary points of $y = f(x)$	[1 mark]
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.
	Copyright © 2019 AQA and its licensors. All rights reserved.

